Full metadata record

DC FieldValueLanguage
dc.contributor.author김주현-
dc.contributor.author신동훈-
dc.contributor.author김해나-
dc.contributor.author조새벽-
dc.contributor.author이한솔-
dc.contributor.author한중탁-
dc.contributor.author조길원-
dc.date.accessioned2021-06-09T04:22:31Z-
dc.date.available2021-06-09T04:22:31Z-
dc.date.issued2019-06-
dc.identifier.citationVOL 11, NO 22-20191-
dc.identifier.issn1944-8244-
dc.identifier.other53039-
dc.identifier.urihttp://pubs.kist.re.kr/handle/201004/69662-
dc.description.abstractSize-selected graphene oxide (GO) nanosheets were used to modify the bulk heterojunction (BHJ) morphology and electrical properties of organic photovoltaic (OPV) devices. The GO nanosheets were prepared with sizes ranging from several hundreds of nanometers to micrometers by using a physical sonication process and were then incorporated into PTB7:PC71BM photoactive layers. Different GO sizes provide varied portions of the basal plane where aromatic sp(2)-hybridized regions are dominant and edges where oxygenated functional groups are located-
dc.description.abstractthus, GO size distributions affect the GO dispersion stability and morphological aggregation of the BHJ layer. Electron delocalization by sp(2)-hybridization and the electron-withdrawing characteristics of functional groups p-dope the photoactive layer, giving rise to increasing carrier mobilities. Hole and electron mobilities are maximized at GO sizes of several hundreds of nanometers. Consequently, non-geminate recombination is significantly reduced by these facilitated hole and electron transports. The addition of GO nanosheets decreases the recombination order of non-geminate recombination and increases the generated carrier density. This reduction in the non-geminate recombination contributes to an increased power conversion efficiency of PTB7:PC71BM OPV devices as high as 9.21%, particularly, by increasing the fill factor to 70.5% in normal devices and 69.4% in inverted devices.-
dc.publisherACS Applied Materials & Interfaces-
dc.subjectgraphene oxide nanosheet-
dc.subjectgraphene oxide size-
dc.subjectbulk heterojunction-
dc.subjectorganic solar cell-
dc.subjectp-dope-
dc.subjectcarrier mobility-
dc.subjectcharge transport-
dc.subjectnon-geminate recombination-
dc.titleImproved Charge Transport and Reduced Non-Geminate Recombination in Organic Solar Cells by Adding Size-Selected Graphene Oxide Nanosheets-
dc.typeArticle-
dc.relation.page2018320191-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE