Self-Powered Chemical Sensing Driven by Graphene-Based Photovoltaic Heterojunctions with Chemically Tunable Built-In Potentials

Title
Self-Powered Chemical Sensing Driven by Graphene-Based Photovoltaic Heterojunctions with Chemically Tunable Built-In Potentials
Authors
강종윤Donghun LeeHaeli ParkSoo Deok HanSu Han KimWoong HuhJae Yoon LeeYoon Seok KimMyung Jin ParkWon Il ParkChul­Ho Lee
Issue Date
2019-01
Publisher
Small
Citation
VOL 15, NO 2-1804303-7
Abstract
Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self-powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built-in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic-driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H2) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy-efficient sensors, providing an important advancement for future ubiquitous sensing.
URI
http://pubs.kist.re.kr/handle/201004/69693
ISSN
1613-6810
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE