Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids

Title
Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids
Authors
이필립한길상김지오배승환한세훈김용주공오영고민재정현석
Issue Date
2019-08
Publisher
ACS energy letters
Citation
VOL 4, NO 8-1851
Abstract
Recently, scalable perovskite fabrication techniques for large, uniform, and highly crystalline perovskite layers have been developed by controlling the crystal chemistry of perovskite precursors. However, scalable techniques for the electron and hole transport layers (ETL and HTL) have rarely been investigated. A major challenge in a scalable technique is obtaining a uniform, highly crystalline, and ultrathin ETL at a low temperature. Here, large-area SnO2 ETLs are fabricated by an electrostatic self-assembly method. The ETLs coated onto haze FTO show high uniformity without pin holes, as confirmed by an electroluminescence image of the perovskite solar module (PSM). In addition, the uniform and pinhole-free SnO2 coating are indirectly verified by observing the unchanged shunt resistance of the PSC with increasing active area, compared to the conventional SnO2 ETL-based PSC. On the basis of this self-assembly method, PSMs of areas 25 and 100 cm2 are fabricated with power conversion efficiencies (PCEs) of 15.3 and 14.0% without shunt resistance loss, respectively.
URI
http://pubs.kist.re.kr/handle/201004/69865
ISSN
2380-8195
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE