NMR Dynamics Study Reveals the Zα Domain of Human ADAR1 Associates with and Dissociates from Z-RNA More Slowly than Z-DNA

Title
NMR Dynamics Study Reveals the Zα Domain of Human ADAR1 Associates with and Dissociates from Z-RNA More Slowly than Z-DNA
Authors
김낙균Ae-Ree LeeJihyun HwangJeong Hwan HurKyeong Kyu KimByong-Seok ChoiJoon-Hwa LeeKyoung-Seok Ryu
Issue Date
2019-02
Publisher
ACS Chemical Biology
Citation
VOL 14, NO 2-255
Abstract
Human RNA editing enzyme ADAR1 deaminates adenosine in pre-mRNA to yield inosine. The Zα domain of human ADAR1 (hZαADAR1) binds specifically to left-handed Z-RNA as well as Z-DNA and stabilizes the Z-conformation. To answer the question of how hZαADAR1 can induce both the B– Z transition of DNA and the A– Z transition of RNA, we investigated the structure and dynamics of hZαADAR1 in complex with 6-base-pair Z-DNA or Z-RNA. We performed chemical shift perturbation and relaxation dispersion experiments on hZαADAR1 upon binding to Z-DNA as well as Z-RNA. Our study demonstrates the unique dynamics of hZαADAR1 during the A– Z transition of RNA, in which the hZαADAR1 protein forms a thermodynamically stable complex with Z-RNA, similar to Z-DNA, but kinetically converts RNA to the Z-form more slowly than DNA. We also discovered some distinct structural features of hZαADAR1 in the Z-RNA binding conformation. Our results suggest that the A– Z transition of RNA facilitated by hZαADAR1 displays unique structural and dynamic features that may be involved in targeting ADAR1 for a role in recognition of RNA substrates.
URI
http://pubs.kist.re.kr/handle/201004/70119
ISSN
1554-8929
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE