Magnesiophilic graphitic carbon nanosubstrate for highly efficient and fast-rechargeable Mg metal batteries

Title
Magnesiophilic graphitic carbon nanosubstrate for highly efficient and fast-rechargeable Mg metal batteries
Authors
오시형류승호임희대이민의Dae Hyun KimSunwoo ParkHyoung-Joon JinYoung Soo Yun
Issue Date
2019-10
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 11, NO 42-38761
Abstract
The high volumetric energy density of rechargeable Mg batteries (RMBs) gives them a competitive advantage over current Li ion batteries, which originates from the high volumetric capacity (∼3833 mA h cm– 3) of bivalent Mg metal anodes (MMAs). On the other hand, despite their importance, there are few reports on research strategies to improve the electrochemical performance of MMAs. This paper reports that catalytic carbon nanosubstrates rather than metal-based substrates, such as Mo, Cu, and stainless steel, are essential in MMAs to improve the electrochemical performance of RMBs. In particular, three-dimensional macroporous graphitic carbon nanosubstrates (GC-NSs) with high electrical conductivities can accommodate Mg metal with significantly higher rate capabilities and Coulombic efficiencies than metal substrates, resulting in a more stable and longer-term cycling performance over 1000 cycles. In addition, while metal-based substrates suffered from undesirable Mg peeling-off, homogeneous Mg metal deposition is well-guided in GC-NSs owing to the better affinity of the Mg2+ ion. These results are supported by density functional theory calculations and ex-situ characterization.
URI
http://pubs.kist.re.kr/handle/201004/70177
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE