Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-lightsintered, kinetically-controlled microstructure

Title
Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-lightsintered, kinetically-controlled microstructure
Authors
조민경정영우박혜진조예진김도진이수연최영민정선호
Keywords
printable; electrodes; Cu-based
Issue Date
2018-03
Publisher
Nanoscale
Citation
VOL 10, NO 11-5053
Abstract
Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu10Sn3 core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.
URI
http://pubs.kist.re.kr/handle/201004/70211
ISSN
2040-3364
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE