Chamaejasmine Isolated from Wikstroemia dolichantha Diels Suppresses 2,4-Dinitrofluoro-benzene-Induced Atopic Dermatitis in SKH-1 Hairless Mice

Title
Chamaejasmine Isolated from Wikstroemia dolichantha Diels Suppresses 2,4-Dinitrofluoro-benzene-Induced Atopic Dermatitis in SKH-1 Hairless Mice
Authors
김수남박노준Tae-young KimJonghwan JegalSangho ChoiSang Woo LeeJin HangMin Hye Yang
Keywords
chamaejasmine; interleukin 4; Wikstroemia dolichantha; 2,4-dinitrochlorobenzene; atopic dermatitis; skin barrier function
Issue Date
2019-11
Publisher
Biomolecules
Citation
VOL 9-697-13
Abstract
Plants of the genus Wikstroemia have long been used as traditional medicines to treat diseases like pneumonia, rheumatism, and bronchitis. This study was designed to determine the e ect of chamaejasmine, a biflavonoid present in W. dolichantha, on atopic dermatitis (AD)-like skin lesions in a 2,4-dinitrochlorobenzene (DNCB)-induced murine model of AD. Initially, we examined the anti-allergic activities of ten flavonoids from W. dolichantha by measuring -hexosaminidase release from RBL-2H3 cells. Subsequently, an SKH-1 hairless mouse model of AD was developed based on the topical application of DNCB. Chamaejasmine (0.5%) or pimecrolimus (1%, positive control) were applied to dorsal skins of DNCB-sensitized AD mice for two weeks. Serum IL-4 and IgE levels were determined using enzyme-linked immunosorbent assay kits and transepidermal water loss (TEWL) and skin hydration were measured using a Tewameter TM210 and a SKIN-O-MAT, respectively. Of the ten flavonoids isolated fromW. dolichantha, chamaejasmine most potently inhibited DNP-specific IgE-induced degranulation in RBL-2H3 cells. Topical administration of chamaejasmine attenuated the clinical symptoms of DNCB-induced dermatitis (i.e., itching, dryness, erythema, and edema). Histological analyses demonstrated that dermal thickness and mast cell infiltration in dermis were significantly reduced by chamaejasmine. In addition, 0.5% chamaejasmine inhibited DNCB-induced increases in total IL-4 and IgE levels in serum, improved skin barrier function, and increased epidermis moisture. Our findings suggest chamaejasmine might be an e ective therapeutic agent for the treatment of atopic diseases.
URI
http://pubs.kist.re.kr/handle/201004/70316
ISSN
2218-273X
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE