Tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum dot optoelectronics

Title
Tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum dot optoelectronics
Authors
김진영최민재김용주임훈희Erkki AlarousuAniruddha AdhikariBasamat S. Shaheen김용호Omar F. MohammedEdward H. Sargent정연식
Issue Date
2019-08
Publisher
Advanced materials
Citation
VOL 31, NO 32-1805886-7
Abstract
Solution‐ processed colloidal quantum dots (CQDs) are attractive materials for the realization of low‐ cost and efficient optoelectronic devices. Although impressive CQD‐ solar‐ cell performance has been achieved, the fabrication of CQD films is still limited to laboratory‐ scale small areas because of the complicated deposition of CQD inks. Large‐ area, uniform deposition of lead sulfide (PbS) CQD inks is successfully realized for photovoltaic device applications by engineering the solute redistribution of CQD droplets. It is shown experimentally and theoretically that the solute‐ redistribution dynamics of CQD droplets are highly dependent on the movement of the contact line and on the evaporation kinetics of the solvent. By lowering the friction constant of the contact line and increasing the evaporation rate of the droplets, a uniform deposition of CQD ink in length and width over large areas is realized. By utilizing a spray‐ coating process, large‐ area (up to 100 cm2) CQD films are fabricated with 3– 7% thickness variation on various substrates including glass, indium tin oxide glass, and polyethylene terephthalate. Furthermore, scalable fabrication of CQD solar cells is demonstrated with 100 cm2 CQD films which exhibits a notably high efficiency of 8.10%.
URI
http://pubs.kist.re.kr/handle/201004/70617
ISSN
0935-9648
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE