Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride

Title
Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride
Authors
최재우정경원김준호
Keywords
Polyethylene terephthalate waste bottle; Ultrasound-assisted alkaline hydrolysis; Terephthalic acid; Magnetic porous carbon composite; Tetracycline antibiotics
Issue Date
2020-04
Publisher
Composites. Part B, Engineering
Citation
VOL 187, 107867
Abstract
The widespread overuse of antibiotics has led to the serious risks human life and environmental sustainability. Even though porous carbon composite derived from metal-organic framework (MOF) has been recognized as an efficient adsorbent for sequestering antibiotics owing to its unique properties, the major drawback is the use of the expensive material, such as terephthalic acid (H2BDC), as an organic ligand, thus weakening its cost effectiveness and practical applicability. Herein, we successfully recovered H2BDC from polyethylene terephthalate (PET) waste bottles via ultrasound-assisted, phase-transfer-catalyzed alkaline hydrolysis under mild conditions. The process conditions were statistically optimized by applying response surface methodology (RSM) based on the Box-Behnken design. As results, 99.91– 100% H2BDC recovery was achieved under the following optimized conditions: NaOH concentration = 14.5%; temperature = 83.2 ℃; and time = 1.5 h. High-purity H2BDC was used as an organic ligand in the synthesis of magnetic porous carbon (α-Fe/Fe3C) composite derived from iron-based MOF, and its utilization as an adsorbent for the removal of TCH from aqueous solution was investigated. The as-prepared α-Fe/Fe3C composite comprised α-Fe, Fe3C, and graphitic carbon and exhibited mesoporous structure and superparamagnetic behavior, resulting in an effective adsorption performance and magnetic separation. Its adsorption properties were examined in terms of solution pH, contact time, initial TCH concentration, and temperature. Adsorption kinetics and isotherm data were well-suited to the pseudo-second-order and Langmuir models, respectively. Considering its excellent reusability and magnetic separability, the α-Fe/Fe3C composite showed immense potential for antibiotic-contaminated wastewater remediation.
URI
http://pubs.kist.re.kr/handle/201004/70982
ISSN
1359-8368
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE