Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications

Title
Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications
Authors
Dirk HenkensmeierHicham Ben youcefSandor BalogGunther G.SchererLorenz Gubler
Keywords
Radiation grafting; Polymer electrolyte fuel cell; Proton exchange membrane; ETFE; Divinylbenzene; Membrane electrode assembly
Issue Date
2020-02
Publisher
International journal of hydrogen energy
Citation
VOL 45, NO 11-7068
Abstract
A novel radiation grafted ETFE based proton conducting membrane was prepared by double irradiation grafting of two different monomers. The intrinsic oxidative stability of the ETFE-g-poly(styrene sulfonic acid-co-divinylbenzene) membrane was improved by reducing the gas crossover through incorporation of polymethacrylonitrile (PMAN) containing the strong polar nitrile group. A fuel cell test was carried out at 80 °C under constant current density of 500 mA cm− 2 for a time exceeding 1′900 h. The incorporation of PMAN considerably improves the interfacial properties of the membrane-electrode assembly. No significant change in the membrane hydrogen crossover and performance over the testing time was observed, except for a measured decrease in the membrane ohmic resistance after 1′000 h. The combination of the double irradiation induced grafting with the use of the PMAN as gas barrier in addition to its chelating abilities (e. g. Ce3+) offers a promising strategy to develop more durable membranes for fuel cells.
URI
http://pubs.kist.re.kr/handle/201004/70992
ISSN
0360-3199
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE