Shape-controlled nanocrystals for catalytic applications

Title
Shape-controlled nanocrystals for catalytic applications
Authors
양성은이현주김청희한정우김지연
Issue Date
2012-05
Publisher
Catalysis Surveys from Asia
Citation
VOL 16, NO 1-27
Abstract
The activity, selectivity, and long-term stability of catalyst nanoparticles can be enhanced by shape modulation. Such shaped catalytic nanocrystals have well-defined surface crystalline structures on which the cleavage and recombination of chemical bonds can be rationally controlled. Metal and metal oxide nanocrystals have been synthesized in various shapes using wet chemistry techniques such as reducing metal precursors in the presence of the surface-capping agents. The surface-capping agents should be removed prior to the catalytic chemical reaction, which necessitates clean catalytically active surface. The removal process should be performed very carefully because this removal often causes shape deformation. A few examples in which the surface-capping agents contribute positively to the chemical reactions have been reported. The examples described in this review include shaped metal, metal composite, and metal oxide nanocrystals that show enhanced catalytic activity, selectivity, and long-term stability for various gas-phase, liquid-phase, or electrocatalytic reactions. Although most of the studies using these shaped nanocrystals for catalytic applications have focused on low-index surfaces, nanocrystals with high-index facets and their catalytic applications have recently been reported. By bridging surface studies with nanoparticle catalysts using shape modulation, catalysts with improved properties can be rationally designed.
URI
http://pubs.kist.re.kr/handle/201004/71195
ISSN
1571-1013
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE