Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation

Title
Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation
Authors
양성은정동영탁영주김지환한학수유종성Aloysius Soon성영은이현주
Issue Date
2015-09
Publisher
Applied catalysis B, Environmental
Citation
VOL 174-42
Abstract
It is very important to improve the mass activity and durability of platinum (Pt) catalysts for oxygen reduction and the oxidation of small organic molecules for fuel cell applications. A strong interaction between Pt and the support materials can change the electronic structures of platinum, enhancing catalytic activity and durability. Here, we deposited various amounts of Pt on TIN supports and characterized these catalysts using electron microscopy, H-2 uptake, XANES, XPS, and valence-band XPS. The Pt nanoparticles had very small sizes (<2 nm) with a narrow size distribution. Compared to a commercial Pt/C catalyst, the Pt surface in Pt/TiN catalysts was in a higher reduction state, and the Pt d-band center was downshifted. The results of OFT calculations confirmed that Pt could be stabilized on the TiN surface and that the Pt d-band center is downshifted relative to bulk Pt. The activity and durability of the Pt/TiN catalysts was enhanced for the oxygen reduction reaction and formic acid oxidation over that of the Pt/C catalyst. For the oxygen reduction reaction at 0.9 V (vs. RHE), the mass activity was 0.29 A/mg(Pt) for the 10 wt% Pt/TiN catalyst and 0.17 A/mg(Pt) for the Pt/C catalyst. After 5000 cycles of an accelerated durability test, the Pt/TiN exhibited a mass activity of 0.24A/mg(Pt), whereas the Pt/C catalyst exhibited a mass activity of 0.12 A/mg(Pt). The Pt/TiN catalyst followed a direct pathway with fewer surface-poisoning intermediates for formic acid oxidation, which enhanced the activity of the Pt/TiN catalyst over that of the Pt/C catalyst. The modification of the electronic structure of Pt catalysts by interaction with TiN supports can significantly enhance the activity and durability of the catalyst.
URI
http://pubs.kist.re.kr/handle/201004/71199
ISSN
0926-3373
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE