Hierarchical assembly of TiO2-SrTiO3 heterostructures on conductive SnO2 backbone nanobelts for enhanced photoelectrochemical and photocatalytic performance

Title
Hierarchical assembly of TiO2-SrTiO3 heterostructures on conductive SnO2 backbone nanobelts for enhanced photoelectrochemical and photocatalytic performance
Authors
박상백김상현김혜진이찬우송희조서세원박훈기김동완홍국선
Issue Date
2014-06
Publisher
Journal of hazardous materials
Citation
VOL 275-18
Abstract
Heterostructures can play a role in enhanced photoinduced electrochemical and catalytic reactions due to the advantageous combination of two compounds. Herein, we demonstrate the fabrication of Sb:SnO2@TiO2-SrTiO3 3D heterostructures via a simple hydrothermal method using a conductive Sb:SnO2@TiO2 nanobelt electrode as a template. XRD, FESEM, and TEM analyses confirm that a well-dispersed and crystalized SrTiO3 layer is formed on the surface of TiO2 nanorods. The photoelectrochemical (PEC) performance of the heterostructure is optimized by controlling the reaction time. Details about the effect of the hydrothermal reaction time on the PEC performance are discussed. The optimized Sb:SnO2@TiO2-SrTiO3 heterostructure exhibited a higher onset potential and a saturated photocurrent in comparison to the Sb:SnO2@TiO2 nanostructure. The result is attributed to a Fermi level shift and a blocking layer effect caused by the SrTiO3. Furthermore, the photocatalytic degradation of methylene blue was significantly enhanced on the optimized Sb:SnO2@TiO2-SrTiO3. This work demonstrates that a synergetic effect between three-dimensional nanoarchitecturing and a heterojunction structure is responsible for enhanced PEC as well as improved photocatalytic performance levels, both of which can be extended to other metal-oxide and/or ternary compounds
URI
http://pubs.kist.re.kr/handle/201004/71231
ISSN
0304-3894
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE