Origin of temperature-dependent performance of hole-transport-layer-free perovskite solar cells doped with CuSCN

Title
Origin of temperature-dependent performance of hole-transport-layer-free perovskite solar cells doped with CuSCN
Authors
안재평박수형이규준강동희신동근정준경유지수김기웅이현복이연진
Issue Date
2020-12
Publisher
Organic electronics
Citation
VOL 87, 105958
Abstract
Recently, a hole-transport-layer (HTL)-free structure was proposed to decrease the cost of organic lead halide perovskite solar cell (PSC) fabrication. In HTL-free PSCs, instead of using an HTL insertion, the HTL material can be added directly into a perovskite precursor solution to improve hole transport. For example, copper thiocyanate (CuSCN) is used for p-type doping of methylammonium lead triiodide (MAPI) via spin coating from a mixed solution. However, the optimum annealing temperature for CuSCN-doped MAPI (CuSCN:MAPI) PSCs is lower than the 100 °C that is typical for undoped MAPI PSCs. In this study, the origin of such lower annealing temperatures of CuSCN:MAPI PSCs is investigated. The highest power conversion efficiency (PCE) and enhanced electron transport in CuSCN:MAPI are obtained with annealing at 60 °C. Using transmission electron microscopy-energy-dispersive X-ray spectroscopy, it is revealed that annealing at 60 °C results in the uniform distribution of CuSCN, while the annealing at 100 °C induces the aggregation of CuSCN with a diameter of ~20 nm. A large energy barrier formed by the shallow-lying conduction band minimum of these CuSCN clusters hinders electron transport. The lower PCE of CuSCN:MAPI PSCs with annealing at 100 °C is attributed to this deterioration in the electron transport.
URI
http://pubs.kist.re.kr/handle/201004/71901
ISSN
1566-1199
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE