Single-photon-driven up-/downconversion nanohybrids for in vivo mercury detection and real-time tracking

Title
Single-photon-driven up-/downconversion nanohybrids for in vivo mercury detection and real-time tracking
Authors
송현석서성은박철순김경호이지연김진영이상훈하태환김재혁임희원김형일권오석박선주
Keywords
바이오소재; 나노소재
Issue Date
2020-01
Publisher
Journal of materials chemistry. A, Materials for energy and sustainability
Citation
VOL 8, NO 4-1677
Abstract
A multifunctional assay with up-/down-conversion (UC/DC) nanohybrids which enables the detection and real-time tracking of hazardous molecules has been developed for use in the field of photoluminescence (PL) point-of-care testing due to its cost and convenience. In particular, innovative approaches such as dual or multimodal imaging and detection under only a single-photon pulse system are highly difficult owing to the issues of device simplification and miniaturization. In this work, we first demonstrated single-photondriven UC/DC dual-modal PL nanohybrids and showed their high performance in in vivo mercury detection and real-time tracking in a mussel simultaneously. Specifically, UC/DC nanohybrids capable of being stimulated by a single photon were presented via a facile and versatile strategy by combining DC fluorophores for heavy metal ion screening with triplet?triplet annihilation upconversion (TTA-UC) nanocapsules for real-time tracking. By adopting the advantages of the structural transformation of DC fluorophores and highly stable TTA-UC nanocapsules, the outstanding monitoring performance of a standard heavy metal ion (i.e. Hg2+) was achieved by a dual-modal PL assay with nanohybrids, exhibiting ultra-sensitivity (under 1 nM) and high-selectivity. Interestingly, their application in the real world was also remarkable in screening and tracking of mercury in mussels. This single-photon-driven UC/DC convergence system will provide powerful analytical methodologies for target detection and real-time tracking in vivo and will attract widespread attention from researchers in the fields of PL nanomaterials and fluorophores.
URI
http://pubs.kist.re.kr/handle/201004/72074
ISSN
2050-7488
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE