Degradation of 1.3 μm InAs Quantum-Dot Laser Diodes: Impact of Dislocation Density and Number of Quantum Dot Layers

Title
Degradation of 1.3 μm InAs Quantum-Dot Laser Diodes: Impact of Dislocation Density and Number of Quantum Dot Layers
Authors
정대환Matteo BuffoloLorenzo RovereCarlo De SantiJustin NormanJohn BowersRobert HerrickGaudenzio MeneghessoEnrico Zanoni
Issue Date
2021-02
Publisher
IEEE journal of quantum electronics
Citation
VOL 57, NO 1
Abstract
This paper investigates the impact of dislocation density and active layer structure on the degradation mechanisms of 1.3 ?m InAs Quantum Dot (QD) lasers for silicon photonics. We analyzed the optical behavior of two sets of samples, having different dislocation densities and different number of quantum dot layers in the active region. The samples were subjected to a short-term step-stress experiment and to long-term constant current operation in order to investigate the dominant degradation processes. The results indicate that: (i) the temperature stability is much higher in the devices grown on native substrate, thanks to the lower defect density; (ii) the roll-off current is considerably higher for the devices with higher number of layers, due to the lower density of carriers in the QDs; (iii) in nominal ground-state operating regime, the degradation rate is limited by the density of dislocations, that may serve as preferential paths for the diffusion of non-radiative recombination centers; (iv) at extreme injection levels and operating temperatures, the devices exhibit a blue shift of the spectral emission; possible explanations for this process are discussed in the paper.
URI
http://pubs.kist.re.kr/handle/201004/72093
ISSN
0018-9197
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE