Tunable Kondo Resonance at a Pristine Two-Dimensional Dirac Semimetal on a Kondo Insulator

Title
Tunable Kondo Resonance at a Pristine Two-Dimensional Dirac Semimetal on a Kondo Insulator
Authors
류혜진이지은Jinwoong HwangSeungseok LeeMinhee KangHyun-Jeong JooJonathan DenlingerJae-Hoon ParkChoongyu Hwang
Issue Date
2020-11
Publisher
Nano letters
Citation
VOL 20, NO 11-7979
Abstract
The proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a nonmagnetic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac Fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge-carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by the temperature and charge-carrier density of graphene.
URI
http://pubs.kist.re.kr/handle/201004/72136
ISSN
1530-6984
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE