Place cell maps slowly develop via competitive learning and conjunctive coding in the dentate gyrus

Title
Place cell maps slowly develop via competitive learning and conjunctive coding in the dentate gyrus
Authors
세바스쳔 로열정다정김소연
Keywords
place cells; spatial mapping; learning; treadmill
Issue Date
2020-09
Publisher
Nature Communications
Citation
VOL 11, 4550
Abstract
Place cells exhibit spatially selective firing fields that collectively map the continuum of positions in environments; how such activity pattern develops with experience is largely unknown. Here, we record putative granule cells (GCs) and mossy cells (MCs) from the dentate gyrus (DG) over 27 days as mice repetitively run through a sequence of objects fixed onto a treadmill belt. We observe a progressive transformation of GC spatial representations, from a sparse encoding of object locations and spatial patterns to increasingly more single, evenly dispersed place fields, while MCs show little transformation and preferentially encode object locations. A competitive learning model of the DG reproduces GC transformations via the progressive integration of landmark-vector cells and spatial inputs and requires MC-mediated feedforward inhibition to evenly distribute GC representations, suggesting that GCs slowly encode conjunctions of objects and spatial information via competitive learning, while MCs help homogenize GC spatial representations.
URI
http://pubs.kist.re.kr/handle/201004/72161
ISSN
2041-1723
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE