Enhanced pyroelectric response from domain-engineered lead-free (K0.5Bi0.5TiO3-BaTiO3)-Na0.5Bi0.5TiO3 ferroelectric ceramics

Title
Enhanced pyroelectric response from domain-engineered lead-free (K0.5Bi0.5TiO3-BaTiO3)-Na0.5Bi0.5TiO3 ferroelectric ceramics
Authors
송현철Yunseok KimAtul ThakreDeepam MauryaDo YoenKimPanithan SriboriboonIl-Ryeol YooShashank PriyaKyung-Hoon ChoJungho Ryu
Issue Date
2021-04
Publisher
Journal of the European Ceramic Society
Citation
VOL 41, NO 4-2532
Abstract
Enhanced pyroelectric response is achieved via domain engineering from [001] grain-oriented, tetragonal-phase, lead-free 0.2(2/3K0.5Bi0.5TiO3-1/3BaTiO3)-0.8Na0.5Bi0.5TiO3 (KBT-BT-NBT) ceramics prepared by a templated grain growth method. The [001] crystallographic orientation leads to large polarization in tetragonal symmetry; therefore, texturing along this direction is employed to enhance the pyroelectricity. X-ray diffraction analysis revealed a Lotgering factor (degree of texturing) of 93 % along the [001] crystallographic direction. The textured KBT-BT-NBT lead-free ceramics showed comparable pyroelectric figures of merit to those of lead-based ferroelectric materials at room temperature (RT). In addition to the enhanced pyroelectric response at RT, an enormous enhancement in the pyroelectric response (from 1750 to 90,900 ?C m?2 K ?1 ) was achieved at the depolarization temperature because of the sharp ferroelectric to antiferroelectric phase transition owing to coherent 180° domain switching. These results will motivate the development of a wide range of lead-free pyroelectric devices, such as thermal sensors and infra-red detectors.
URI
http://pubs.kist.re.kr/handle/201004/72309
ISSN
0955-2219
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE