Synthesis of V­doped In2O3 Nanocrystals via Digestive-Ripening Process and Their Electrocatalytic Properties in CO2 Reduction Reaction

Title
Synthesis of V­doped In2O3 Nanocrystals via Digestive-Ripening Process and Their Electrocatalytic Properties in CO2 Reduction Reaction
Authors
민병권김낙균Myeong-Geun KimJinhoo JeongYoungjo ChoiJinwoo ParkEunjoon ParkCheol-Hong CheonWoong Kim
Issue Date
2020-03
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 12, NO 10-11897
Abstract
The development of synthetic methods for monodisperse nanomaterial is of great importance in science and technology related to nanomaterials. The strong demands to prepare exceptionally monodisperse nanocrystals have made digestive-ripening one of the most sought-after size-focusing processes. Although digestive-ripening processes have been demonstrated to produce various metals and semiconductors, their applicability to oxides has rarely been studied despite various unique properties and applications of oxide nanomaterials. In this work, we demonstrate the successful synthesis of monodisperse V-doped In2O3 nanocrystals via a modified digestive-ripening process. The nanocrystals have truncated octahedral shape faceted with eight (222) and six (220) planes. To the best of our knowledge, this is the first report on the digestive-ripening synthesis of highly symmetrical doped oxide nanocrystals. Moreover, V-doped In2O3 nanocrystals exhibit electrocatalytic activities for CO2 electrochemical reduction and produce CH3OH, which has not been attainable from previously reported electrocatalysts based on indium or indium oxide. This distinctive catalytic property of V-doped In2O3 is attributed to the presence of V-dopants in the In2O3 host. Our demonstration has important implications for both nanocrystal synthesis and electrocatalyst development.
URI
http://pubs.kist.re.kr/handle/201004/72667
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE