A Size-Selectively Biomolecule-Immobilized Nanoprobe-Based Chemiluminescent Lateral Flow Immunoassay for Detection of Avian-Origin Viruses

Title
A Size-Selectively Biomolecule-Immobilized Nanoprobe-Based Chemiluminescent Lateral Flow Immunoassay for Detection of Avian-Origin Viruses
Authors
이준석박진영박성현정희진이지호이병두석영웅최종호김민곤송창선
Issue Date
2021-01
Publisher
Analytical chemistry
Citation
VOL 93, NO 2-800
Abstract
In this study, a signal-amplifiable nanoprobe-based chemiluminescent lateral flow immunoassay (CL-LFA) was developed to detect avian influenza viruses (AIV) and other contagious and fatal viral avian-origin diseases worldwide. Signal-amplifiable nanoprobes are capable of size-selective immobilization of antibodies (binding receptors) and enzymes (signal transducers) on sensitive paper-based sensor platforms. Particle structure designs and conjugation pathways conducive for antigen accessibility to maximum amounts of immobilized enzymes and antibodies have advanced. The detection limit of the CL-LFA using the signal-amplifiable nanoprobe for the nucleoprotein of the H3N2 virus was 5 pM. Sensitivity tests for low pathogenicity avian influenza H9N2, H1N1, and high pathogenicity avian influenza H5N9 viruses were conducted, and the detection limits of CL-LFA were found to be 103.5 50% egg infective dose (EID50)/mL, 102.5 EID50/mL, and 104 EID50/mL, respectively, which is 20 to 100 times lower than that of a commercial AIV rapid test kit. Moreover, CL-LFA demonstrated high sensitivity and specificity against 37 clinical samples. The signal-amplifiable probe designed in this study is a potential diagnostic probe with ultrahigh sensitivity for applications in the field of clinical diagnosis, which requires sensitive antigen detection as evidenced by enhanced signaling capacity and sensitivity of the LFAs.
URI
http://pubs.kist.re.kr/handle/201004/72768
ISSN
0003-2700
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE