Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer

Title
Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer
Authors
부찬희Xi ChenNgai Yin Yipa
Issue Date
2019-10
Publisher
Journal of membrane science
Citation
VOL 588, 117181
Abstract
The emerging vapor pressure-driven osmosis (VPDO) membrane technology enables direct conversion of abundant low-temperature (<100?°C) heat resources to useful work. In this study, a theoretical model is established to understand mass and heat transfer of VPDO, and two hydrophobic nanoporous membranes, polypropylene (PP) and polytetrafluoroethylene (PTFE), of different chemistry and structural properties were evaluated. Although the PP membrane has a less effective transport pathway, the considerably larger pore size yields a much higher Knudsen diffusivity that results in consistently higher vapor fluxes across different temperature-pressure conditions. This finding provides strong evidence that mass transfer in VPDO is dominated by Knudsen diffusion. Additionally, we find that operation at higher pressurizations caused vapor flux decline that is attributed to the membrane morphological deformation. However, the PP membrane is less sensitive to the effects of compaction, underlining the importance of membrane mechanical robustness for VPDO. Lastly, the study shows that evaporative heat transfer is significantly greater than conductive losses and the PP membrane, with higher water fluxes, has better evaporation thermal efficiencies. This study provides fundamental understanding on the impacts of membrane properties on mass and heat transfer in VPDO, and highlights the centrality of vapor permeability and mechanical robustness in developing high-performance membranes.
URI
http://pubs.kist.re.kr/handle/201004/72802
ISSN
0376-7388
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE