GC-MS-based metabolic signatures reveal comparative steroidogenic pathways between fetal and adult mouse testes

Title
GC-MS-based metabolic signatures reveal comparative steroidogenic pathways between fetal and adult mouse testes
Authors
최만호변동준한소윤Takashi BabaShogo YanaiKen-ichirou Morohashi김재홍
Keywords
androgen; testosterone biosynthesis; GC-MS; steroid profiling; mouse testis
Issue Date
2021-01
Publisher
Andrology
Citation
VOL 9, NO 1-406
Abstract
Background: Previous studies on gonadal steroidogenesis have not compared metabolic pathways between fetal and adult mouse testes to date. Objectives: To evaluate comparative metabolic signatures of testicular steroids between fetus and adult mice using gas chromatography-mass spectrometry (GC-MS)-based steroid profiling. Materials and methods: GC-MS with molecular-specific scan modes was optimized for selective and sensitive detection of 23 androgens, 7 estrogens, 14 progestogens, and 13 corticoids from mouse testes with a quantification limit of 0.1-5.0 ng/mL and reproducibility (coefficient of variation: 0.3%-19.9%). Based on 26 steroids quantitatively detected in testes, comparative steroid signatures were analyzed for mouse testes of 8 fetuses on embryonic day 16.5 and 8 adults on postnatal days 56-60. Results: In contrast to large amounts of steroids in adult testes (P<.0002), all testicular levels per weight unit of protein were significantly increased in fetal testes (P < .002, except 6β-hydroxytestosterone of P = .065). Both 11β-hydroxyandrostenedione and 7α-hydroxytestosterone were only measurable in fetal testes, and metabolic ratios of testosterone to androstenediol and androstenedione were also increased in fetal testes (P < .05 for both). Discussion and conclusion: Testicular steroid signatures showed that both steroidogenic Δ4 and Δ5 pathways in the production of testosterone were activated more during prenatal development. Both 7α- and 11β-hydroxylations were predominant, while hydroxylations at C-6, C-15, and C-16 of testosterone and androstenedione were decreased in the fetus. The present GC-MS-based steroid profiling may facilitate understanding of the development of testicular steroidogenesis.
URI
http://pubs.kist.re.kr/handle/201004/72817
ISSN
2047-2927
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE