High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure

Title
High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure
Authors
조세연곽효원엄정주이민의진형준
Issue Date
2019-04
Publisher
International journal of biological macromolecules
Citation
VOL 127-152
Abstract
As the interest in environmentally friendly materials and concerns regarding depletion of petroleum resources has increased, the research on natural polymers is being actively pursued. Among the various materials based on natural polymeric resources, the interest in using natural fibers in bio-composites has grown due to their lightweight, non-toxicity, low cost, and abundance. However, the lack of interfacial adhesion between filaments and poor water resistance make the use of natural fiber-based polymer composites less attractive. To overcome these drawbacks, formaldehyde-based synthetic binders have been used. However, this requires an additional synthesis of the binder, and potential toxicity problems exist. In this work, robust and rigid natural polymer nonwoven preforms were prepared by mixing jute fibers with silk sericin (SS). SS was employed as a natural facile binder and the strong binding between jute fibers and SS resulted in remarkable enhancements in tensile strength, elongation, and toughness, which increased up to 539.1, 385.7, and 1943.8%, respectively, compared with the pristine jute nonwoven. In addition, the dense and rigid structure obtained through SS coating ensured the structural stability of the nonwoven preforms in moisture environments. Silkworm cocoon-structured natural polymer nonwoven preforms with excellent mechanical strength and higher physical stability may have more potential utilization in the composite material fields.
URI
http://pubs.kist.re.kr/handle/201004/72931
ISSN
0141-8130
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE