Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes

Title
Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes
Authors
이석헌정다운이창하배효관
Keywords
marine bacterial community; intermittent chlorination; T-RFLP; marine biofilm; qPCR; statistical analysis
Issue Date
2019-06
Publisher
Membrane Water Treatment
Citation
VOL 10, NO 6-404
Abstract
The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with 0.2 mg-Cl2/L chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorineresistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg Cl2/L). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.
URI
http://pubs.kist.re.kr/handle/201004/72959
ISSN
2005-8624
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE