Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst

Title
Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst
Authors
오형석김동현Stefan Ringe김해솔김세준김범모배근수Frederic Jaouen김우열김형준최창혁
Keywords
Nitrogen oxide conversion; electrocatalyst; hydroxylamine; iron nitrogen doped carbon
Issue Date
2021-03
Publisher
Nature Communications
Citation
VOL 12, NO 1856(2021)-11
Abstract
Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the human-caused unbalance of the global nitrogen-cycle, but controlling product selectivity remains a great challenge. Here we show iron?nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction into hydroxylamine. Using in operando spectroscopic techniques, the catalytic site is identified as isolated ferrous moieties, at which the rate for hydroxylamine production increases in a super-Nernstian way upon pH decrease. Computational multiscale modelling attributes the origin of unconventional pH dependence to the redox active (non-innocent) property of NO. This makes the rate-limiting NO adsorbate state more sensitive to surface charge which varies with the pH-dependent overpotential. Guided by these fundamental insights, we achieve a Faradaic efficiency of 71% and an unprecedented production rate of 215 μmol cm?2 h?1 at a short-circuit mode in a flow-type fuel cell without significant catalytic deactivation over 50 h operation.
URI
http://pubs.kist.re.kr/handle/201004/73064
ISSN
2041-1723
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE