Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy

Title
Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy
Authors
이병철Takashi KodamaKiho BaeJun Young JungJeeyoung ShinBrian S. Y. KimJungju SeoUk SimFritz B. PrinzSettasit ChaikasetsinKenneth E. GoodsonWoosung Park
Keywords
Thermal expansion; thin films; harmonic joule heating; atomic force microscopy
Issue Date
2021-05
Publisher
Applied physics letters
Citation
VOL 118-5
Abstract
Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0X10^-6 +/- 6.4X10^-6 K^-1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.
URI
http://pubs.kist.re.kr/handle/201004/73136
ISSN
0003-6951
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE