High-performance multiblock PEMs containing a highly acidic fluorinated-hydrophilic domain for water electrolysis

Title
High-performance multiblock PEMs containing a highly acidic fluorinated-hydrophilic domain for water electrolysis
Authors
김형준So Young Lee채지언백새얀송광호박치훈이관수
Issue Date
2021-11
Publisher
Journal of membrane science
Citation
VOL 638, 119694
Abstract
5 k and 10 k, where k represents 103 g mol-1) of hydrophobic segments are used to investigate the effects of the membrane properties compared with those of Nafion® and PAES random copolymer (i.e., BPSH40). Atomic force microscopy images of the BPSH40 and multiblock membranes are shown to agree closely with a mesoscale simulation, thus confirming the importance of the morphological effect upon the transport properties. Moreover, the multiblock copolymer with a higher proportion of hydrophilic segments (10 k?5k) was shown to provide enhanced performance (3.41 A cm-2 at 1.9 V) compared to the multiblock copolymer with equal proportions of hydrophilic and hydrophobic segments (10 k?10 k) due to the greater continuity of nano-sized ionic channels.; The present paper describes the design and evaluation of novel hydrophilic?hydrophobic poly(arylene ether sulfone) (PAES) multiblock copolymers for their synergistic effects upon transport properties and their potential use in proton exchange membrane water electrolysis. The multiblock copolymers are prepared via a coupling reaction between (i) a hydrophilic segment consisting of a disulfonated quinone fluorinated biphenyl group that contains fluorine moieties next to the sulfonated groups to increase the acidity, and (ii) hydrophobic segments composed of non-sulfonated biphenyl sulfone to provide dimensional stability. Two different lengths (molecular weights
URI
http://pubs.kist.re.kr/handle/201004/73733
ISSN
0376-7388
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE