Full metadata record

DC FieldValueLanguage
dc.contributor.author손해정-
dc.contributor.author박성민-
dc.contributor.author박소현-
dc.contributor.authorMei Lyu-
dc.contributor.author이현주-
dc.contributor.author마부수-
dc.contributor.author홍기하-
dc.contributor.author김형준-
dc.contributor.author김택수-
dc.contributor.author노준홍-
dc.contributor.author박남규-
dc.date.accessioned2021-10-27T15:30:03Z-
dc.date.available2021-10-27T15:30:03Z-
dc.date.issued2021-08-
dc.identifier.citationVOL 13, NO 30-35605-
dc.identifier.issn1944-8252-
dc.identifier.other57606-
dc.identifier.urihttp://pubs.kist.re.kr/handle/201004/73947-
dc.description.abstractFor enhancing the performance and long-term stability of perovskite solar cell (PSC) devices, interfacial engineering between the perovskite and hole-transporting material (HTM) is important. We developed a fluorinated conjugated polymer PFPT3 and used it as an interfacial layer between the perovskite and HTM layers in normal-type PSCs. Interaction of perovskite and PFPT3 via Pb?F bonding effectively induces an interfacial dipole moment, which resulted in energy-level bending-
dc.description.abstractthis was favorable for charge transfer and hole extraction at the interface. The PSC device achieved an increased efficiency of 22.00% with an open-circuit voltage of 1.13 V, short-circuit current density of 24.34 mA/cm2, and fill factor of 0.80 from a reverse scan and showed an averaged power conversion efficiency of 21.59%, which was averaged from forward and reverse scans. Furthermore, the device with PFPT3 showed much improved stability under an 85% RH condition because hydrophobic PFPT3 reduced water permeation into the perovskite layer, and more importantly, the enhanced contact adhesion at the PFPT3-mediated perovskite/HTM interface suppressed surface delamination and retarded water intrusion. The fluorinated conjugated polymeric interfacial material is effective for improving not only the efficiency but also the stability of the PSC devices.-
dc.publisherACS Appl Mater Interfaces-
dc.titleSimultaneous Enhanced Efficiency and Stability of Perovskite Solar Cells Using Adhesive Fluorinated Polymer Interfacial Material-
dc.typeArticle-
dc.relation.page3559535605-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE