Photoechogenic Inflatable Nanohybrids for Upconversion-Mediated Sonotheranostics

Title
Photoechogenic Inflatable Nanohybrids for Upconversion-Mediated Sonotheranostics
Authors
김세훈김영선유정현이용덕장도협정근수김도진김현준이서경박현종Ajay Singh안동준김동하방준하김정안Paras N. Prasad
Issue Date
2021-10
Publisher
ACS Nano
Citation
VOL 온라인게재, 온라인게재
Abstract
Hybrid nanostructures are promising for ultrasound-triggered drug delivery and treatment, called sonotheranostics. Structures based on plasmonic nanoparticles for photothermal-induced microbubble inflation for ultrasound imaging exist. However, they have limited therapeutic applications because of short microbubble lifetimes and limited contrast. Photochemistry-based sonotheranostics is an attractive alternative, but building near-infrared (NIR)-responsive echogenic nanostructures for deep tissue applications is challenging because photolysis requires high-energy (UV?visible) photons. Here, we report a photochemistry-based echogenic nanoparticle for in situ NIR-controlled ultrasound imaging and ultrasound-mediated drug delivery. Our nanoparticle has an upconversion nanoparticle core and an organic shell carrying gas generator molecules and drugs. The core converts low-energy NIR photons into ultraviolet emission for photolysis of the gas generator. Carbon dioxide gases generated in the tumor-penetrated nanoparticle inflate into microbubbles for sonotheranostics. Using different NIR laser power allows dual-modal upconversion luminescence planar imaging and cross-sectional ultrasonography. Low-frequency (10 MHz) ultrasound stimulated microbubble collapse, releasing drugs deep inside the tumor through cavitation-induced transport. We believe that the photoechogenic inflatable hierarchical nanostructure approach introduced here can have broad applications for image-guided multimodal theranostics.
URI
http://pubs.kist.re.kr/handle/201004/73994
ISSN
1936-0851
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE