Feasibility of spherical hollow carbon framework as a stable host material for reversible metallic Li storage

Title
Feasibility of spherical hollow carbon framework as a stable host material for reversible metallic Li storage
Authors
유성종임경민최승훈김진수박민식
Issue Date
2021-09
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 13, NO 36-42740
Abstract
A spherical hollow carbon framework decorated with functional heteroatoms is designed and synthesized using ultrasonic spray pyrolysis as a potential anode material for lithium metal batteries (LMBs). The pore structure of the hollow carbon framework can be tailored by melamine, which is a functional additive for integrating abundant nanopores and the uniform decoration of heteroatoms in the structure. The large surface area and pore volume of the hollow carbon framework offer enhanced reversibility and capability for metallic Li storage. In addition, the dendritic growth of Li and volume changes induced by repeated Li plating and stripping can be effectively suppressed during cycling. More importantly, atomic-scale decorations of heteroatoms can effectively lower the overpotential for the nucleation and growth of metallic Li inside the hollow carbon framework. It is mainly responsible for improving the cycle performance and rate capability, even at a high current density. Finally, the hollow carbon framework anode shows stable behavior toward Li plating and stripping without significant capacity fading in the LMBs than conventional Li metal anodes.
URI
http://pubs.kist.re.kr/handle/201004/74100
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE