Full metadata record

DC Field Value Language
dc.contributor.authorBaek, Jongyeon-
dc.contributor.authorKim Seung-Hwan-
dc.contributor.authorJeong, Heejae-
dc.contributor.authorNguyen, Manh-Cuong-
dc.contributor.authorDaeyoon Baek-
dc.contributor.authorBaik, Seunghun-
dc.contributor.authorHoang-Thuy Nguyen, An-
dc.contributor.authorBaek, Jong-Hwa-
dc.contributor.authorKim, Hyung-jun-
dc.contributor.authorKwon, Hyuk-Jun-
dc.contributor.authorChoi, Rino-
dc.date.accessioned2024-01-12T02:33:42Z-
dc.date.available2024-01-12T02:33:42Z-
dc.date.created2022-11-24-
dc.date.issued2023-01-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75865-
dc.description.abstractThe crystallization of amorphous Ge layers grown at room temperature was investigated using continuous-wave green laser irradiation. The most favorable crystallization conditions for the 40-nm-thick Ge layer were determined by adjusting the laser power density, laser beam shape, and laser scan direction. The optimized laser irradiation crystallizes the amorphous Ge layer in a significantly long-range ordered structure on MgO (001) substrate, whereas that on SiO2/Si substrate becomes polycrystalline. The line-shaped flat-top beam profile of the laser along the MgO [100] scan direction is a decisive factor for uniform crystallization on the MgO substrate. A SiO2 capping layer suppresses heat dissipation from the surface of the amorphous Ge layer and facilitates a lower temperature at the Ge/MgO interface, resulting in the initiation of crystallization from the Ge/MgO interface after laser irradiation. Our analysis indicates that the Ge layer crystallized on MgO (001) substrate exhibits an in-plane epitaxial relationship of Ge [110] // MgO [100] with 45° misorientation.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleLow-temperature laser crystallization of Ge layers grown on MgO substrates-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2022.155368-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.609-
dc.citation.titleApplied Surface Science-
dc.citation.volume609-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000882461100004-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordAuthorLaser crystallization-
dc.subject.keywordAuthorEpitaxial growth-
dc.subject.keywordAuthorMagnesium oxide-
dc.subject.keywordAuthorGermanium-
dc.subject.keywordAuthorMonolithic 3-dimensional structure-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE