Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector

Authors
TAEWOOK KIMKim, Sung HyunShim, Jae WonHwang, Do Kyung
Issue Date
2022-12
Publisher
Springer Science + Business Media
Citation
Frontiers of Optoelectronics, v.15, no.1
Abstract
Energy harvesting and light detection are key technologies in various emerging optoelectronic applications. The high absorption capability and bandgap tunability of organic semiconductors make them promising candidates for such applications. Herein, a poly(3-hexylthiophene-2,5-diyl) (P3HT):indene-C60 bisadduct (ICBA) bulk heterojunction-based organic photodiode (OPD) was reported, demonstrating dual functionality as an indoor photovoltaic (PV) and as a high-speed photodetector. This OPD demonstrated decent indoor PV performance with a power conversion efficiency (PCE) of (11.6?±?0.5)% under a light emitting diode (LED) lamp with a luminance of 1000 lx. As a photodetector, this device exhibited a decent photoresponsivity of 0.15 A/W (green light) with an excellent linear dynamic range (LDR) of over 127 dB within the optical power range of 3.74?×?10?7 to 9.6?×?10?2 W/cm2. Furthermore, fast photoswitching behaviors could be observed with the rising/falling times of 14.5/10.4 μs and a cutoff (3 dB) frequency of 37 kHz. These results might pave the way for further development of organic optoelectronic applications.
ISSN
2095-2759
URI
https://pubs.kist.re.kr/handle/201004/75899
DOI
10.1007/s12200-022-00024-5
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE