Full metadata record

DC Field Value Language
dc.contributor.authorSu-ung Chae-
dc.contributor.authorYi Seho-
dc.contributor.authorJaeeun Yoon-
dc.contributor.authorJong Chan Hyun-
dc.contributor.authorSehyun Doo-
dc.contributor.authorSeungjun Lee-
dc.contributor.authorJuyun Lee-
dc.contributor.authorKim, Seon Joon-
dc.contributor.authorYoung Soo Yun-
dc.contributor.authorJung-Hoon Lee-
dc.contributor.authorKoo, Chong Min-
dc.date.accessioned2024-01-12T02:36:06Z-
dc.date.available2024-01-12T02:36:06Z-
dc.date.created2022-09-14-
dc.date.issued2022-11-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75969-
dc.description.abstractLithium metal batteries (LMBs) have attracted increasing attention owing to their high theoretical capacity and low reduction potential. However, safety concerns and their low coulombic efficiencies (CE) arising from the nonuniform and irreversible formation of Li dendrites on their anodes hinder their practical application. Here, we demonstrate that a highly defective titanium-carbonitride (Ti3CNTx)-MXene-based fiber membrane can function as a dendrite-free anode substrate for LMBs. The Ti3CNTx fiber membrane electrodes, prepared via the electrostatic self-assembly of Ti3CNTx flakes onto a glass-fiber membrane substrate, had a high surface area (∼276 m2 g?1), leading to a high CE of ∼99.1%, excellent cycling stability of more than 1000 cycles in a Li half-cell test, and high energy density (581.78 W h kg?1) and high power density (3008 W kg?1) in a Li-MXene-fiber/NCM622 full-battery test. This excellent cell performance is attributed to the strong lithiophilicity and high density of Ti vacancy defects in the Ti3CNTx MXenes, as well as the high surface area of the fiber membrane electrode. The lithiophilicity and defect structure of Ti3CNTx MXenes in LMB operation were elucidated by DFT calculations.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHighly defective Ti3CNTx-MXene-based fiber membrane anode for lithium metal batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2022.07.025-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.52, pp.76 - 84-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume52-
dc.citation.startPage76-
dc.citation.endPage84-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000862697700001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordAuthorLithium metal battery-
dc.subject.keywordAuthorMXene-
dc.subject.keywordAuthorTi(3)CNTx-
dc.subject.keywordAuthorDefect-
dc.subject.keywordAuthorTi vacancy-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE