Full metadata record

DC Field Value Language
dc.contributor.authorKo, Young Jin-
dc.contributor.authorKim, Jun Yong-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorKim M.G.-
dc.contributor.authorSeong T.-Y.-
dc.contributor.author박종길-
dc.contributor.author정연주-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorLee, Wook Seong-
dc.contributor.authorLee, Dong Ki-
dc.contributor.authorOh, Hyung Suk-
dc.date.accessioned2024-01-12T03:31:37Z-
dc.date.available2024-01-12T03:31:37Z-
dc.date.created2022-05-04-
dc.date.issued2022-04-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76751-
dc.description.abstractThough stannic oxides can catalyze CO2 electroreduction to formate, the stability of these catalysts has been limited. Here, the authors demonstrate stable fluorine-doped SnO2 materials toward formate production at current densities of >300 mA/cm(2). The electrosynthesis of formate from CO2 can mitigate environmental issues while providing an economically valuable product. Although stannic oxide is a good catalytic material for formate production, a metallic phase is formed under high reduction overpotentials, reducing its activity. Here, using a fluorine-doped tin oxide catalyst, a high Faradaic efficiency for formate (95% at 100 mA cm(-2)) and a maximum partial current density of 330 mA cm(-2) (at 400 mA cm(-2)) is achieved for the electroreduction of CO2. Furthermore, the formate selectivity (approximate to 90%) is nearly constant over 7 days of operation at a current density of 100 mA cm(-2). In-situ/operando spectroscopies reveal that the fluorine dopant plays a critical role in maintaining the high oxidation state of Sn, leading to enhanced durability at high current densities. First-principle calculation also suggests that the fluorine-doped tin oxide surface could provide a thermodynamically stable environment to form HCOO* intermediate than tin oxide surface. These findings suggest a simple and efficient approach for designing active and durable electrocatalysts for the electrosynthesis of formate from CO2.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleExploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-022-29783-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.13, no.1-
dc.citation.titleNature Communications-
dc.citation.volume13-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000785774400002-
dc.identifier.scopusid2-s2.0-85128718627-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS-DIFFUSION ELECTRODE-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusCURRENT-DENSITY-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusTIN-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusACID-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusEVOLUTION-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE