
CHAPTER 17

All-atom protein folding with stochastic
optimization methods

A. Schug1, A. Verma2, K. H. Lee3 and W. Wenzel1

1Forschungszentrum Karlsruhe, Institute for Nanotechnology,
P.O. Box 3640, D-76021 Karlsruhe, Germany 

2Forschungszentrum Karlsruhe, Institute for Scientific Computing,
P.O. Box 3640, D-76021 Karlsruhe, Germany

3Korean Institute for Science and Technology, Supercomputing Materials Laboratory,
P.O.Box 131, Cheongryang, Seoul 130-650, Korea 

Abstract

We recently developed an all-atom free energy forcefield (PFF01) for protein structure
prediction with stochastic optimization methods. We demonstrated that PFF01 correctly
predicts the native conformation of several proteins as the global optimum of the free
energy surface. Here we review recent folding studies, which permitted the reproducible
all-atom folding of the 20 amino-acid trp-cage protein, the 40 amino-acid three-helix
HIV accessory protein and the 60 amino-acid bacterial ribosomal protein L20 with a
variety of stochastic optimization methods. These results demonstrate that all-atom
protein folding can be achieved with present day computational resources for proteins
of moderate size.

17.1 INTRODUCTION

Ab initio protein tertiary structure prediction (PSP) and the elucidation of the mechanism
of the folding process are among the most important outstanding problems of biophysical
chemistry [1,2]. The many complementary proposals for PSP span a wide range of rep-
resentations of the protein conformation, ranging from coarse-grained models to atomic
resolution. The choice of representation often correlates with the methodology employed
in structure prediction, ranging from empirical potentials for coarse-grained models [3,4]
to complex atom-based potentials that directly approximate the physical interactions in the
system. The latter offer insights into the mechanism of protein structure formation and
promise better transferability, but their use incurs large computational costs that has con-
fined all-atom protein structure prediction to all but the smallest peptides [5,6]. 
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It has been one of the central paradigms of protein folding that proteins in their native
conformation are in thermodynamic equilibrium with their environment [7]. Exploiting
this characteristic the structure of the protein can be predicted by locating the global min-
imum of its free energy surface without recourse to the folding dynamics, a process
which is potentially much more efficient than the direct simulation of the folding process.
PSP based on global optimization of the free energy may offer a viable alternative ap-
proach, provided that suitable parameterization of the free energy of the protein in its en-
vironment exists and that the global optimum of this free energy surface can be found
with sufficient accuracy [8]. 

We have recently demonstrated a feasible strategy for all-atom protein structure predic-
tion [9–11] in a minimal thermodynamic approach. We developed an all-atom free-energy
force field for proteins (PFF01), which is primarily based on physical interactions with
important empirical, though sequence independent, corrections [11]. We already demon-
strated the reproducible and predictive folding of four proteins, the 20 amino-acid trp-cage
protein (1L2Y) [9,12], the structurally conserved headpiece of the 40 amino-acid HIV
accessory protein (1F4I) [10,13] and the 60 amino-acid bacterial ribosomal protein L20
[14]. In addition we showed that PFF01 stabilizes the native conformations of other pro-
teins, e.g., the 52 amino-acid protein A [5,15], and the engrailed homeodomain (1ENH)
from Drosophilia melangaster [16]. 

17.1.1 Force field

We have recently developed an all-atom (with the exception of apolar CHn groups) free
energy protein force field (PFF01) that models the low-energy conformations of proteins
with minimal computational demand [10,11,17]. In the folding process at physiological
conditions the degrees-of-freedom of a peptide are confined to rotations about single
bonds. The force field is parameterized with the following non-bonded interactions: 
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Here rij denotes the distance between atoms i and j and g(i) the type of the amino acid i. The
Lennard Jones parameters (Vij Rij for potential depths and equilibrium distance) depend on
the type of atom pair and were adjusted to satisfy constraints derived from a set of 138 pro-
teins of the PDB database [17–19]. The non-trivial electrostatic interactions in proteins are
represented via group-specific dielectric constants (εg(i), g( j) depending on the amino-acid
to which atom i belongs). The partial charges qi and the dielectric constants were de-
rived in a potential-of-mean-force approach [20]. Interactions with the solvent were first
fit in a minimal solvent accessible surface model [21] parameterized by free energies per
unit area σi to reproduce the enthalpies of solvation of the Gly-X-Gly family of peptides
[22]. Ai corresponds to the area of atom i that is in contact with a ficticious solvent.
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Hydrogen bonds are described via dipole–dipole interactions included in the electrostatic
terms and an additional short-range term for backbone–backbone hydrogen bonding (CO
to NH) which depends on the OH distance, the angle between N, H and O along the bond
and the angle between the CO and NH axis [11]. 

17.1.2 Optimization methods

The low-energy free energy landscape of proteins is extremely rugged due to the com-
paratively close packing of the atoms in the native structure. Suitable optimization methods
must therefore be able to speed up the simulation by avoiding high-energy transition
states, adapt large-scale moves or accept unphysical intermediates. Here we report on
four different optimization methods, the stochastic tunneling method [23], the basin hop-
ping technique [24,25], the parallel tempering method [26,27] and a recently employed
evolutionary technique. The stochastic tunneling method and the basin hopping approach
are inherently sequential algorithms, which evolve a single configuration according to a
given stochastic process. In contrast, parallel tempering and evolutionary techniques are
inherently parallel optimization strategies that are well suited to presently available
multiprocessor architectures with low bandwidth connections. Since all-atom protein
structure prediction remains a computationally challenging problem it is important to
search for suitable optimization methods that are capable of exploiting such architectures,
i.e., a high degree of parallelism with very little and optimally asynchronous communi-
cation is desirable. 

17.1.2.1 Stochastic tunneling method
The stochastic tunneling technique (STUN) [23] was proposed as a generic global opti-
mization method for complex rugged potential energy surfaces (PES). For a number of
problems, including the prediction of receptor–ligand complexes for drug development
[28,29], this technique proved superior to competing stochastic optimization methods.
The idea behind the method is to flatten the potential energy surface in all regions that lie
significantly above the best estimate for the minimal energy (E0). In STUN the dynamic
process explores not the original, but a transformed PES, 

ESTUN � 1n�x ��x2���1�� (2)

which dynamically adapts and simplifies during the simulation. Here x � γ (E�E0),
where E is the energy, and E0 the best energy found so far. The problem-dependent trans-
formation parameter [23] γ controls the steepness of the transformation (we used. 
γ � 0.5 kcal/mol) The transformation in Eq. (2) ameliorates the difficulties associated
with the original transformation [23], because ESTUN ∝ 1n(E/kT) continues to grow
slowly for large energies. The ficticious temperature of STUN must be dynamically
adjusted in order to accelerate convergence. STUN works best if its dynamical process
alternates between low-temperature ‘local search’ and high-temperature ‘tunneling
phases’. At finite temperature the dynamics of the system then becomes diffusive at
energies E >> E0 independent of the relative energy differences of the high-energy
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conformations involved. On the untransformed PES, STUN thus permits the simulation
to ‘tunnel’ through energy barriers of arbitrary height. 

17.1.2.2 Parallel tempering
The parallel (or simulated) tempering technique [26,27] was introduced to overcome dif-
ficulties in the evaluation of thermodynamic observables for models with very rugged
potential energy surfaces and has been applied previously in several protein folding stud-
ies [30–32]. Low-temperature simulations on rugged potential energy surfaces are
trapped for long times in similar metastable conformations because the energy barriers to
structurally potentially competing different conformations are very high. The idea of PT
is to perform several concurrent simulations of different replicas of the same system at
different temperatures and to exchange replicas (or temperatures) between the simula-
tions i and j with probability: 

p � min�1, exp ��(βj � βi) (Ei � Ej)�� (3)

where βi � 1/kβTi and Ei are the inverse temperatures and energies of the conformations,
respectively. The temperature scale for the highest and lowest temperatures is determined
by the requirement to efficiently explore the conformational space and to accurately re-
solve local minima, respectively. For proteins the temperatures must thus fall in a bracket
between approximately 2–600 K. As described elsewhere [12] we have used an adaptive
temperature control for the simulations: starting with an initial, ordered set of geometri-
cally distributed temperatures we monitored the exchange rate between adjacent temper-
atures. If the exchange rate between temperature i and i�1 was below 0.5 per cent, then
all temperatures above ti were lowered by 10 per cent of ti�1�ti. If the exchange rate was
above 2 per cent, then all all temperatures above ti were increased by the same difference. 

To further improve the computational efficiency of PT we also used a replication step,
in which the best conformation replaces the conformation at the highest temperature
every 250 000 simulation steps. This mechanism results in a rapid, large-scale explo-
ration of the folding funnel around the best conformation found near the presently best
conformation. The parallel tempering method was implemented in our program using the
MPI communication library, which is available on most present day parallel computa-
tional architechtures with distributed memory. Since the communication effort is low
(only the temperatures and energies need to be exchanged) and communication occurs
only every few thousand steps, when replica exchange is attempted, this implementation
scales very well with the number of processors. 

17.1.2.3 Basin hopping method
An alternative approach to effectively eliminate high-energy transition states of the PES
is used in the the basin hopping technique [24] (BHT), also known as Monte Carlo with
minimization. This method simplifies the original potential energy surface by replacing
the energy of each conformation with the energy of a nearby local minimum. This re-
placement eliminates high-energy barriers in the stochastic search that are responsible for
the freezing problem in simulated annealing. In many cases the additional minimization
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effort to find an associated local minimum is more than compensated for by the increase
of efficiency of the stochastic search on the simplified potential energy surface. 

For the protein simulations we replace a single minimization step with a simulated an-
nealing run [33]. Within each SA simulation, new configurations are accepted according
to the Metropolis criterion. The temperature is decreased geometrically from its starting
point to the final value, which must be chosen to be small compared with typical energy
differences between competing metastable conformations, to ensure convergence to a
local minimum (typically 2–5 K). Depending on the choice of the starting temperature,
the SA search can deviate more or less significantly from its starting conformation. The
individual relaxation step is thus parameterized completely by the starting (TS), the final
temperature and the number of steps. We investigate various choices for the numerical
parameters of the method, but have always used a geometric cooling schedule. 

At the end of one annealing step the new conformation was accepted if its energy dif-
ference to the current configuration was no higher than a given threshold energy εT, an
approach recently proven optimal for certain optimization problems [34]. Throughout
this study we use a threshold acceptance criterion of 1 kcal/mol. 

17.1.2.4 Evolutionary strategies
While basin hopping and STUN are essentially sequential algorithms, PT provides some
degree of inherent parallelism, which suits present day distributed architectures. In order
to use even larger numbers of processors, we implemented an evolutionary strategy, in
which the computational work is performed by many independent client computers that
request tasks from a master computer. The master maintains a list of open tasks com-
prising the active conformations of the population. Each client performs an increasingly
extensive energy minimization on the conformation it is given. When the client returns a
new conformation after completing its task, it may replace an existing conformation fol-
lowing a scheme that balances the diversity of the population and the continued energetic
improvement of its members. Specifically the client performs either a Monte Carlo (MC)
or a simulated annealing (SA) [33] simulation of specified length on the conformation.
Conformations are drawn randomly from the active population. When the client returns
a new conformation after completing its task, the result is stored. Additionally, the new
conformation replaces the energetically worst conformation in the active population, pro-
vided its energy is lower than the highest energy of the population and that it differs by
at least 3Å backbone root mean square deviation (RMSB) from all members of the active
population. If the new conformation has an RMSB of less than 3Å to some conformation
of the population, it replaces this conformation if it is lower in energy. 

This approach builds on the strength of the basin hopping technique, which is used
for the individual steps. Since stochastic optimization methods never locate the global
optimum with certainty, several independent simulations must be undertaken to obtain
a relative degree of confidence in the convergence of the methods. In the evolution-
ary approach the progress a single simulation has made towards the optimum is
exploited, because the resulting conformation will become a member of the active
population. As such it may replace less optimized conformations and speed up the
convergence of the overall population in comparison used a population of uncorre-
lated replicas. 
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17.2 RESULTS

17.2.1 The trp-cage protein

Using the PFF01 force field we simulated 20 independent replicas of the 20 amino-acid trp-
cage protein [6,36] (pdb code 1L2Y) with a modified version of the stochastic tunneling
method [9,23]. Six of 25 simulations reached an energy within 1 kcal/mol of the best
energy, all of which correctly predicted the native experimental structure of the protein (see
Fig. 17.1 (left)). We found a strong correlation between energy and RMSB deviation to the
native structure for all simulations. The conformation with the lowest energy had a back-
bone root mean square deviation of 2.83 Å. 

We also folded this protein with the parallel tempering method [12]. We found that
the standard approach, which preserves the thermodynamic equilibrium of the simulated
populations, did not reach very low energies even for the low-temperature replicas. We
believe that the reason for this convergence failure was the insufficient exchange proba-
bility between replicas at different temperatures. We therefore introduced the adaptive
temperature control described in the methods section. Fig. 17.2) shows the energies and
corresponding temperatures for a simulation using 30 replicas. The temperature adjust-
ment scheme results in a temperature distribution that permits frequent exchange of replicas
and significantly speeds convergence. The best final structure associated with the lowest
temperature in the simulation with 30 replicas had an RMSB deviation of 2.01 Å. We
found convergence of the method using eight to thirty replicas. However, a minimal num-
ber of at least eight replicas appears to be required to fold the protein, for lower replica
numbers it appears that even the adaptive temperature scheme fails to generate rapid
replica exchange while spanning both high and low temperatures required for the speedy
exploration of the free energy surface and the refinement of local minima, respectively. 

Finally we have folded the trp-cage protein with the basin hopping technique. In com-
parison with the stochastic tunneling method we note that care must be taken with the
parameterization of the basin hopping technique. First of all, very high starting temperatures,
above 600 K, are required to permit a sufficient exploration of the free energy surface.
This was also observed in the parallel tempering simulations (see Fig. 17.2) bottom
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Fig. 17.1. Overlay of the native(red) and folded (blue) structures of trp-cage protein [35], the HIV accessory
protein [13] and the bacterial ribosomal protein L20 [14] (see Color Plate 25).
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panel). As in PT, the lowest temperature had to be chosen in the range of 2–6 K to ensure
that local minima are resolved well. In the stochastic tunneling method, the nonlinear
transformation of the energy permits large-scale relaxations through thermodynamically
forbidden regions, in basin hopping this effect can only be achieved by raising the
temperature to unphysical values. We cannot rule out the possibility that basin hopping
simulations with low starting temperatures would converge eventually, however, it
appears that such an approach would not be computationally competitive. Furthermore,
we note that the convergence of the basin hopping method is improved dramatically when
the length of the relaxation run is moderately increased with the number of the basin
hopping cycle. When we compared simulations comprised of basin hopping steps of
constant length mid simulations where the length increased with the square root of the
cycle number, we found much lower energies for the latter after investing the same total
number of function evaluations in each run. 

Using the basin hopping method with a starting temperature of Ts � 800 K and a final
temperature of Tf � 3 K the lowest six of 20 simulations converged to the native structure.
A total of 12 of these simulations approached the native conformation as its estimate of
the optimum. The energies and RMSB deviations of all simulations are shown in Fig. 17.3).
The plot indicates the existence of a set of structures with 2–3 Å RMSB deviation, which
may correspond to the folding funnel, and a competing metastable conformation with
about 5 Å RMSB. While all methods correctly identify the folding funnel, the basin hop-
ping approach results in the lowest energies. Note that the second best simulation has an
RMSB of only 1.8Å to the native conformation and loses in energy with less than 0.5
kcal/mol. 

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
41
42
43
44
45

All atom protein folding with stochastic optimization methods 343

Fig. 17.2. Energies (upper panel) and temperatures (lower panel) of the 30 replica modified parallel tempering
simulation of the trp-cage protein reported in the text. The dotted line in the upper panel corresponds to the es-
timate of the global optimum of the free energy (obtained independently). The lower panel demonstrates a rapid
equilibration of the temperatures during the simulation. The upper panel demonstrates the convergence of the
energy and the rapid exchange of information between the different replicas as discussed in the text (see Color
Plate 26).
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17.2.2 The HIV accessory protein

Encouraged by this result, we applied the modified basin hopping or Monte Carlo with
minimization (MCM) strategy [8,25] to fold the structurally conserved 40 amino-acid
headpiece of the HIV accessory protein [10]. We performed 20 independent simulations
and found the lowest five to converge to the native structure (see tbldecoyhiv) [14]. The
first non-native decoy appears in position six, with an energy deviation of 5 kcal/mol and
a significant RMSB deviation. The table demonstrates that all low-energy structures have
essentially the same secondary structure, i.e., position and length of the helices are
always correctly predicted, even if the protein did not fold correctly. 

The good agreement between the folded and the experimental structure is also evident
from Fig. 17.1 (center), which shows the secondary structure alignment of the native and
the folded conformations. The good physical alignment of the helices illustrates the
importance of hydrophobic contacts to correctly fold this protein. An independent meas-
ure to assess the quality of these contacts is to compare the Cβ–Cβ (which correspond to
the NOE constraints of the NMR experiments that determine tertiary structure) in the
folded structure to those of the native structure. We found that 66 per cent (80 per cent)
of the Cβ–Cβ distances agree to within one (1.5) standard deviations of the experimental
resolution. 

We also performed a simulation of the HIV accessory protein using the adapted par-
allel tempering method [13]. We used 20 processors of an INTEL XEON PC cluster and
ran the simulation for a total of 30�106 energy evaluations for each configuration, which
corresponds to approximately 500 CPU hours on an 2.4 GHz INTEL XEON processor.
All simulations were started with random conformations at high temperatures to allow
for rapid, unbiased relaxation of the structures and the temperature distribution. The final
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Fig. 17.3. Energy vs. RMSB plot for the final energies of the twenty basin hopping simulations described in
the text (diamonds). For comparison we also indicate the best energy result for the STUN method (circle) and
for the thirty processor PT simulation (square) (see Color Plate 27). 
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conformation with the lowest energy/temperature converged to within 1.23/2.46 Å back-
bone root mean square (RMSB) deviation to the best known decoy /NMR structure of the
HIV accessory protein. The overlay of the experimental and the converged structure (see
Fig. 17.1) demonstrates the good agreement between the conformations, the difference
in NOE constraints demonstrates that not only short-range, but also long-range
distances are correctly predicted. Considering the ensemble of final conformations, we
find many structures closely resembling the native conformation. The RMSB deviations
of the next four lowest conformations (all within 1.5 kcal/mol of the minimal energy of
XXX) have RMSB deviations of 3.14/2.23/3.78/3.00 Å, respectively, to the native decoy. 

17.2.3 The bacterial ribosomal protein L20

In the course of the simulations on the HIV accessory protein we explored methods to
share information between the independent basin hopping simulations in order to im-
prove the overall convergence. For the 60 amino-acid bacterial ribosomal protein L20
(pdb-code 1GYZ) we thus experimented with the evolutionary technique described in the
methods section. Starting from a seed population of random structures, we performed the
folding simulation in three phases: (1) generation of starting structures of the population,
(2) evolutionary improvement of the population, and (3) refinement of the best resulting
structures to ensure convergence. 

In phase (1) we performed high-temperature (500K) Monte Carlo simulations of 50 000
steps each. In these runs we reduced the strength of the solvent interactions (VS) by 20
per cent to facilitate the rapid formation of secondary structures. It has been argued that
hydrophobic collapse competes with secondary structure formation in protein folding. In
the collapsed conformational ensemble, large-scale conformational changes, such as those
required for secondary structure formation, occur only rarely. The goal of this simulation
phase was the generation of a wide variety of competitive starting conformations for
further refinement. 

At the end of this simulation we had gathered in excess of 17 000 distinct decoys that
were ranked according to their total energy as well as according to the individual energy
terms of the force field (VS,VLJ,VHB,VC (Sidechain) and VC(backbone). For each criterion
we selected the best 50 conformations and eliminated duplicates to arrive at a population
of 266 starting structures for phase (2) of the procedure. This population was relaxed in
14 000 SA simulations as described in the methods section. At the end of this step we
selected the 50 conformations best in total energy for further refinement. In phase (3) we
performed 5500 SA simulations on this subpopulation. The length of the individual re-
laxation simulations was gradually increased from 105 steps per simulation to 2.3�106. 

The best conformation had approached the native conformation to about 4.6 Å RMSB
deviation. In total, six of the lowest ten conformations approach the native structure, while
four others misfolded. Note that the selection criterion for the active population (see meth-
ods section) precludes the occurrence of the same configuration to within 3 Å RMSB; this
dominance of near native conformations of the total ensemble is particularly encouraging. 

In order to quantify the overall improvement of native content during the simulation,
we defined the native content of the simulated ensemble as a weighted average of the
deviations of the population and the native conformation: for a population of size N we
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add 100(N�R�1)/N for each near-native decoy (RMSB less than 4Å) ranked at position
R by energy to the total native score of this population. A score of 100 thus corresponds
to a native decoy placed at the top position, while a near-native decoy at the very bot-
tom contributes just unity. Non-native conformations contribute nothing. Using this
measure the final population contains in excess of 20 per cent of near-native confor-
mations, its native score exceeds 800, increasing 60-fold during simulation phases (2)
and (3). 

17.3 CONCLUSION

Since the native structure dominates the low-energy conformations arising in all of these
simulations, our results demonstrate the feasibility of all-atom protein tertiary structure
prediction for three different proteins ranging from 20–60 amino acids in length with a
variety of different optimization methods. The free energy approach thus emerges as a
viable trade-off between predictivity and computational feasibility. While sacrificing the
folding dynamics, a reliable prediction of its terminus, the native conformation – which
is central to most biological questions – can be achieved. 

The computational advantage of the optimization approach stems from the possibility
of visiting unphysical intermediate conformations with high energy during the search.
This goal is realized with different mechanisms in all of the employed stochastic opti-
mization methods. In the stochastic tunneling method, the nonlinear transformation of the
PES permits the dynamical process to traverse abritrarily high energy barriers at low
termperatures; in basin hopping and parallel tempering, simulation phases at very high
temperatures accomplish the same objective. 

Our results indicate that the simple basin hopping method is very efficient in 
the determination of the global optimum of the free energy surface of realistic all-atom
protein models. It is encouraging that the same structure was also found for the trp-cage
protein using the parallel tempering and the stochastic tunneling method and also for the
HIV accessory protein using the parallel tempering method. This finding indicates that
the result of the folding approach is not an artefact of the optimization strategy. In direct
comparison, however, we find that the basin hopping technique gave the lowest energies.
Since it is virtually parameter-free, and very simple to implement, it emerges as a natural
work-horse for our approach. 

Its one important distavantage is the fact that different basin hopping simulations are
completely independent of one another. Because the underlying optimization problem in
all-atom protein folding is very difficult, and the free energy surface is very rugged,
several simulations must be undertaken to obtain a relative degree of confidence in the
convergence of the approach. From this perspective it is desirable to design an optimization
method in which different members of the simulated population can learn from one
another. In the evolutionary approach we have explored, here is one particularly simple
scheme to ensure that the total computational effort is concentrated on the best confor-
mations that arise at intermediate stages of the simulations. So far it leads to the folding
of the largest protein at all-atom resolution, but much work remains to be done to opti-
mize this approach.
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17.4 DISCUSSION

This review indicates that all-atom protein structure prediction with stochastic optimization
methods becomes feasible with present day computational resources. The fact that three
proteins were reproducibly folded with different optimization methods to near-native
conformation increases the confidence in the parameterization of our all-atom protein
force field PFF01. The presently available evidence indicates that the comparatively
straightforward basin hopping routine is a good work-horse to evolve individual confor-
mations. The resolution of several independent basin hopping simulations may be
enhanced by the use of evolutionary algorithms, such as the one used for the bacterial
ribosomal protein L20 . We note that the master–client model for this strategy is asyn-
chronous and can be implemented outside the simulation program using the standard
TCP/IP, FTP or HTTP protocols. Using generic libraries, such as MPI, it can also be easily
implemented on MPP architectures. Since the amount of information that needs to be
exchanged is very small, while the effort in a single basin hopping cycle is substantial,
there is virtually no loss in an asynchronous parallel implementation. This makes the evo-
lutionary approach investigated here suitable for present day GRID architectures. While
the present results demonstrate proof of principle, much work remains to be done to
arrive at an optimal strategy. 

Protein structure prediction with stochastic optimization methods requires two
separate key ingredients: an accurate force field and efficient optimization techniques.
One cannot overemphasize the importance of the interplay of optimization methods and
force field validation. Rational force field development mandates the ability to generate
decoys that fully explore competing low-energy conformations to the native state. The suc-
cess of different optimization strategies depends strongly on the structure of the potential
energy surface. As a result, the development of efficient optimization techniques for an
all-atom protein structure prediction depends on the availability of a force field that sta-
bilizes native conformations of proteins with appreciable hydrophobic cores. For helical
proteins the bottleneck in ab initio all-atom structure prediction now lies in the development
of optimization strategies that significantly increase the system size and increase the
reliability of the predictions. Based on the results reviewed here, it is sensible to investigate
improvements of the evolutionary techniques based on the basin hopping method for this
purpose. 

The application of this methodology to a wide range of proteins will generate
large decoy sets of metastable conformations that compete with the native structure
of the protein. These decoy sets may in turn be used to improve the parameterization
of the force field. By its very nature, the approximation of the free energy of the
system mandates the use of implicit solvent models. This implies that interactions
with the solvent and intramolecular electrostatic interactions must be parameterized
in accurate, yet efficient effective models. Since both effects are highly nontrivial,
the free-energy approach can only approximate, but not duplicate, the results of
all-atom explicit water simulations. The present evidence indicates that the native
conformation is reproduced to 3–4 Å resolution with PFF01, but the results of the free-
energy approach could be refined in all-atom simulations that start from a set of low-energy
decoys. 
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