
Edited by Detlef Stolten, R. Can Samsun, and Nancy Garland

Fuel Cells

Data, Facts, and Figures

Editors

Prof. Detlef Stolten
Forschungszentrum Jülich GmbH
IEF-3: Fuel Cells
Leo-Brandt-Str.
52425 Jülich
Germany

*Dr. Remzi C. Samsun*Forschungszentrum Jülich
Wilhelm-Johnen-Str.
52428 Aachen
Germany

Dr. Nancy Garland
U.S. Department of Energy
EE 32, 5G-023
1000 Independence Ave., S.W.
Washington D.C., DC 20585-0121
USA

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33240-3 ePDF ISBN: 978-3-527-69389-4 ePub ISBN: 978-3-527-69391-7 Mobi ISBN: 978-3-527-69390-0 oBook ISBN: 978-3-527-69392-4

Cover Design Formgeber, Mannheim
Typesetting Thomson Digital, Noida, India
Printing and Binding Markono Print Media
Pte Ltd, Singapore

Printed on acid-free paper

14.1

14.2 14.3

14.4 14.5

Introduction 135

Conclusions 139 References 139

Assembly of a Single Cell 137

Contents	
11	MEAs for PEM Fuel Cells 110 Andrew J. Steinbach and Mark K. Debe
11.1	Introduction 110
11.2	MEA Basic Components (PEMs, Catalysts, GDLs and
11.2	Gaskets) 111
11.3	MEA Performance, Durability, and Cost Targets for
	Transportation 112
11.4	MEA Robustness and Sensitivity to External Factors 115
11.5	Technology Gaps 117
11.6	Conclusion 118
	References 118
12	Gas Diffusion Layer 121
	Sehkyu Park
12.1	Introduction 121
12.2	Macroporous Substrate 122
12.3	Microporous Layer 123
12.4	Characterization of GDL 124
12.5	Conclusion 126
	References 127
13	Materials for PEMFC Bipolar Plates 128
	Heli Wang and John A. Turner
13.1	Introduction 128
13.2	Composite BP Materials 130
13.3	Metallic BP Materials 131
	Light Alloys 131
13.3.2	Stainless Steel Bipolar Plates 132
	Metal-Based Coatings 132
	Carbon/Polymer-Based Coatings 133
13.3.3	Remarks 133
	Acknowledgments 133
	References 133
14	Single Cell for Proton Exchange Membrane Fuel Cells
	(PEMFCs) 135
	Hyoung-Juhn Kim

Main Components of a Single Cell for a PEMFC $\,\,$ 136

Measurement of a Single Cell Performance 138

14 Single Cell for Proton Exchange Membrane Fuel Cells (PEMFCs)

Hyoung-Juhn Kim

Korea Institute of Science and Technology, 39-1 Hawolkog-dong, Sungbuk-ku, Seoul 136-791, Korea

Abstract

The evaluation of single cell performance of a proton exchange membrane fuel cell (PEMFC) is mandatory for the development of single cell components such as the membrane electrode assembly (MEA), gas diffusion medium (GDM), and bipolar plate. This chapter describes the cell components that comprise a PEMFC single cell, and explains their roles in the assembled cell.

Keywords: bipolar plate; end plate; gas diffusion medium; gasket; insulator; medium; membrane electrode assembly; proton exchange membrane fuel cell; single cell

14.1 Introduction

The amount of electricity generated in a single cell of a PEMFC is very limited. To obtain increased energy output, a PEMFC stack in which single cells are arranged in series or a row should be a practical configuration for producing the desired amounts of electricity on a commercially useful basis. However, the stack arrangement is not appropriate for evaluating the components of PEMFCs, especially because of their complexity and expensive manufacturing process. It is, though, quite practical and simple to manufacture and evaluate the performance of the materials and parts comprising a single cell component of the stack, rather than assess the stack after assembly. Moreover, the results of the single cell performance tests are reliable and can be acquired very cheaply. The main components of a single PEMFC and their functions are discussed in this chapter.

Fuel Cells: Data, Facts, and Figures, First Edition. Edited by Detlef Stolten, Remzi C. Samsun, and Nancy Garland.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.