
osgGap: Scene Graph Library for Mobile based on Hybrid Web App Framework

The osgGap is an OpenSource JavaScript 3D scene graph library for
mobile Web Apps based on hybrid mobile web framework. With osgGap,
programmers can easily develop 3D applications for multiple mobile
devices with web standards (i.e., JavaScript, HTML5, and CSS3), instead
of using mobile platform-specific languages (e.g., Java for Android,
Objective-C for iOS). To support web standards while providing high
performances to 3D applications on mobile devices, we carefully design a
bridge between the OpenSceneGraph as a scene graph engine in the
native layer and our JavaScript functions in the web-app layer, via
PhoneGap as a hybrid mobile application framework. As a result, we can
provide the full OpenGL ES functionalities of mobile devices with high-
level scene graph APIs in JavaScript.

 Youna Lee†, Seungmin Rho†, Jae-In Hwang‡, Heedong Ko‡, Junho Kim†
†Visual Computing Lab., Kookmin University

‡Imaging Media Research Center, Korea Institute of Science and Technology

Introduction

System Design

Experimental Results

IEEE ISMAR’13

PhoneGap
(H/W abstraction)

Platform Layer (e.g., Android, iOS, etc)

System Library
(e.g., Dalvik / Cocoa)

WebKit

OpenSceneGraph

(OSG)

Web App (JavaScript + HTML5 + CSS)

osgGap

3D Scene Graph Library for Hybrid Mobile Apps
 Our goal is to design a high-level scene graph

API that supports web-standards while
providing high performances in mobile 3D
apps.

 We have designed a bridge between the
OpenSceneGraph as a scene graph engine in
the native system layer and our JavaScript
functions in the web app layer.

Native Layer

Web App Layer

osgGap

Tracking

module for

mobile AR

(e.g., Vuforia)

OSG

Scene

Camera Group

Geode

Matrix

Transform

Camera

Manipulator

Touch

Manipulator

Camera

Parameters

Screen-space coord. &

Finger count

Touch

WebView touch event listener

(a)

(b)

Android Platform iOS Platform

Scene Construction with osgGap
 Example of osgGap that

illustrates how a 3D scene is
constructed with osgGap in
the initial stage.

 The osgGap allow us to
structure the scene graph at
the web app level with
JavaScript.

// Get the osgGap webview instance
var webView = osgGap.WebView;

// Create nodes
var root = new osgGap.Group();
var geode = new osgGap.Geode();
var matrixTransform = new osgGap.MatrixTransform();

// Construct a scene graph
matrixTransform.addchild(geode);
root.addChild(matrixTransform);

// Specify the root node for the osgGap webview
webView.setSceneData(root);

Native Layer

OSG

Web App Layer

osgGap

Scene

Camera Group

Geode

Matrix

Transform

Group
Matrix

Transform
Geode WebView

Scene Graph Synchronization
 Each node defined in the web app

layer has a pointer to the
corresponding node in the native
layer.

 We synchronize the data into two
layers in a way that the virtual nodes
in the web app layer can access the
actual nodes of the scene graph in
the native layer.

Mobile
Platform

No Interactions
(fps)

User Interactions (fps)

Touch-based 3D
interactions

Vision-based
AR

Android 58 45 29

iOS 43 34 20

Event Handling & Scene Manipulation
(a) Touch-based 3D interaction

- osgGap interprets the touch events from
a webview as the finger gestures for 3D
object interactions.

- osgGap receives the touch events from
the event listener in a webview and
sends the screen coordinates and a
number of fingers related to the touch
gesture to the manipulator node in the
native layer.

(b) Scene navigation w/ external tracking modules
- In mobile AR applications, the 3D

transformation information related to the
camera node in osgGap should be
manipulated by the motions of the physical
camera in a mobile device.

- As the tracker module passes the camera
parameters to the web app layer, the
developer sets them for the virtual camera in
osgGap that actually invokes the camera
parameter updates in the native layer.

We perform the demos in two different mobile platforms; Android
with the Samsung Galaxy Note 10.1 and iOS with the Apple iPad2.

