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Abstract. This study presents an algebraic method to detect, count,
and identify concomitant motions of parallel robots at the velocity level.
The pose and orientation of moving platform of parallel manipulators
(PMs) with f -DOF could be commonly described by f possible motion
variables on the instantaneous motion space (IMS) and (6 − f) restric-
tion motion variables on the instantaneous restriction space (IRS). How-
ever, in some situations, PMs moving platform may accompanied by a
concomitant (parasitic) motions along the direction of restriction space.
Therefore, the commonly understood one-to-one correspondence between
joint space and task space mobility of non-redundant PMs would be
compromised. This phenomenon occurred due to the fact that the align-
ment of screws can change the reciprocal screws while the given screw
systems are still maintained. To demonstrate the proposed method, an
amplitude-based concomitant motion comparison is performed on two
widely utilized lower-mobility parallel mechanisms, 3RPS and 3PRS. The
result has shown that for the selected mechanisms, concomitant motion
is identical regardless of their difference in joint arrangements in each
limbs.
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1 Introduction

The number of actuated joints in most non-redundant PMS at the joint space
is considered to be equal to the number of DOF of the end-effector spanned by
possible motion vectors [1] and this can be obtained through different mobil-
ity calculation methods [2]. Yet, some of the approaches may be able to reveal
the existence of some parasitic motions but its source, behavior, and relation
to the main motion of the manipulator is challenging to identify. As a result,
researchers have conducted several kinematic studies in order to identify and
characterize such motions. The research on PMs concomitant motion could be
tracked back to the late 90th following the invention of 3RPS mechanism by
Hunt [3]. In 2000, Carretero conducted a position level analysis to this class
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of manipulator, and identified the end-effector with three concomitant motions
accompanying one transnational and two rotational independent DOF [4]. Lin
et al. [5], in 2018, introduced a geometric method to define, classify, shield or use
these parasitic motions. In the same year, Huo used conformal geometric algebra
(CGA) method [6] to analyze finite motion of PMs with concomitant ones. Pre-
viously, Li has made a comparison of parasitic motion among 3PRS mechanisms
considering different joint arrangements and showed that the dependency of con-
comitant motion on different limb arrangement and location of spherical joint
[7]. In general, several authors agreed that concomitant motion is an inherent
characteristics of parallel manipulators with fewer DOF. Even though, schol-
ars have made great effort to date in describing this motion, it is still an open
problem that limits the invention of new mechanisms with the desired motion
geometry [6].

2 Concomitant Motion

In order to accurately depict the motion of moving platform, understanding the
instantaneous restriction space (IRS) and instantaneous motion space (IMS) is
essential [8,11]. IRS and IMS are said to be complementary subspace to one
another that IRS belongs to the no motion space while IMS is for the freedom
of moving platform. In other word, IMS is related to DOF of the manipulator.
However, unfortunately some fewer DOF manipulators may have extra motion
called concomitant movement in the direction of restriction space. Such motion
should be taken into account due to its potential effect on the application and
intended accuracy of the task. Though, the amplitude of these motion is small [7],
it should not be underestimated. If IMS is equal to the number of independent
actuators, the system can be stabilized based on the predetermined path, how-
ever, the existence of concomitant motion can affect the system stability. Thus,
identification of the existence, type, and amplitude of concomitant motion is
vital.

2.1 Basics of Concomitant Motion

As it is mentioned in Sect. 2, concomitant motion is a strange phenomenon often
appeared in the restricted direction of the end-effector of parallel mechanisms.
This motion is characterized as unwanted motion that affects the accuracy of
the mechanism within the work-space. The good simple example to describe
this problem is a four bar linkage shown in Fig. 1. Let the coupler point o′ of the
given four-bar mechanism shown be the center of end-effector. If one wanted to
make a linear motion along x or along y, it is only possible to get the result with
minimal error by doing some parameter optimization. Generally, any point on
the coupler induces a combined motion along x, y and about z axis. Thus, The
complete orientation of the coupler can be described by p and φ which clearly
shows two dependent motions of the end-effector. Where, φ is θ +β of a branch.
This phenomenon affects the accuracy of the manipulators and some industries
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Fig. 1. Four-bar linkage

use external compensation method [13] while others maximize it to utilize [12]
this effect for higher DOF operation using lower mobility manipulators.

3 Velocity Level Constraint Relation to Detect
Concomitant Motion

Since structural constraints may not be fully integrated into the position level
equations, velocity level relations can provide additional and a better insight
to reveal the concomitant motion phenomenon. The Jacobian of actuation and
restriction, feasible motion of the end-effector, and independent variables in the
joint space are analyzed. In this study, an analytic method to obtain the two
fundamental sub-spaces of the Jacobian is performed based on [9]. Henceforth,
equations to describe concomitant motion will be derived based on 3PRS and
3RPS manipulators shown in Fig. 2 (schematics) and Fig. 3 (3D models).

3.1 Mechanism Description

Each limb in the manipulator comprises five DOF joints, that are revolute, pris-
matic, and spherical disregarding the order. Frame F is attached at the center
of base plane and Frame M is attached at the center of moving platform. a and
b are radius of the base and moving platform respectively. bi is the vector from
p5,i to M based on F . Spherical joints located at p5,i connects the leg with
moving platform. All three legs of both mechanisms are arranged to be located
by 120◦ difference around the fixed frame to connect the two plates. x and y axes
of F are in the base plate, x directing along the first leg. Frame 0 is a local or
leg coordinate used to derive leg Jacobian and vectors super-scripted with this
reference are expressed in the local coordinate. Vectors without superscript 0 are
referenced in frame F . p5i is the position vector locating the center spherical
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Fig. 2. Schematic diagram. 3PRS (Left), 3RPS (Right)

joint, p1,i and p0,i are position of the first joint for the PRS and RPS respec-
tively. (p5,i − p0,i) and ((p5,i − p1,i)) are vectors of RPS and PRS legs along
the rod directed to the center of spherical joint. pF

M is the position of center of
moving plate with respect to fixed frame.

Fig. 3. 3D model. 3PRS (Left), 3RPS (Right)

3.2 Leg and Manipulator Jacobian

Once the Jacobian of isolated leg is derived in reference to the local frame 0, it
can be transformed to the fixed and moving platform reference frames by the
following transformation matrix.

M =
[

Rz(ξi) 0
−[bi]×Rz(ξi) Rz(ξi)

]
(1)

where, ξi is given by (i − 1) 2π
3 for i = 1, 2, 3.
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Now, all direction and position vectors are represented in frame F . Then,
let s1i‖, s2i‖, s3i‖, s4i‖, and s5i‖ be the direction vectors of isolated legs from
base to top plate as shown in Fig. 2 expressed in the fixed frame. Similarly, s1i⊥ ,
s2i⊥ , s3i⊥ , s4i⊥ and s5i⊥ are defined to be the moment vectors. sc

i‖ is the leg
restriction screw imposed on the end-effector by ith leg. Accordingly, extended
Jacobian of the leg is derived with the method proposed in [9].

JePRS =
[

0 s2i‖ s3i‖ s4i‖ s5i‖ 0
s1i‖ s2i⊥ s3i⊥ s4i⊥ s5i⊥ sc

i‖

]
(2)

JeRPS =
[
s1i‖ 0 s3i‖ s4i‖ s5i‖ 0
s1i⊥ s2i‖ s3i⊥ s4i⊥ s5i⊥ sc

i‖

]
(3)

Following similar fashion, reciprocal screw relation, inverse Jacobian of the two
mechanism can be obtained as

GT
PRS =

[
(p5,i − p1,i)T ((p5,i − p1,i) × bi)T

sT
2i‖ (s2i‖ × bi)T

]
(4)

GT
RPS =

[
(p5,i − p0,i)T ((p5,i − p0,i) × bi)T

sT
1i‖ (s1i‖ × bi)T

]
(5)

For i = 1, 2, 3. With the Jacobian (Inverse) G, the rate kinematics (IRK) can
be obtained as follows.

q̇ = GT $t (6)

Equation 6 comprises the motion and constraint wrench vectors. The more
detailed expression holds the following relation.

[
q̇a

q̇c

]
=

[
GT

av GT
aω

GT
cv GT

cω

]
$t (7)

3.3 Detection of Concomitant Motion

As far as q̇c in Eq. 7 is leg constraint, it should always be zero. Therefore, the
active joint rate equation must satisfy the following constraint.

GT
c $t = 0 (8)

For Eqs. 7 and 8 to meet the above relations requirement, $t must be a feasible
velocity profile for the manipulator.

With the assurance of above constraint relation, we need to obtain inde-
pendent motions of end-effector. This can be achieved by solving the permitted
twist (motion) of the moving plate (PTM) at the home configuration of the
manipulator when fixed and moving plates are parallel to each other. i.e.

PTM = I − GcGW†
c (9)
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Since Gc is in a ray order, PTM is in axis order. Equation 9 can be expanded
to the 6 × 6 matrix as

PTM =

⎡
⎢⎢⎢⎢⎢⎢⎣

s11⊥ s12⊥ s13⊥ s11‖ s12‖ s13‖
s21⊥ s22⊥ s23⊥ s21‖ s22‖ s23‖
s31⊥ s32⊥ s33⊥ s31‖ s32‖ s33‖
s41⊥ s42⊥ s43⊥ s41‖ s42‖ s43‖
s51⊥ s52⊥ s53⊥ s51‖ s52‖ s53‖
s61⊥ s62⊥ s63⊥ s61‖ s62‖ s63‖

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

at t = 0, we know all the elements of Gc. Solving, PTM gives us

PTM =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Equation 11 tells that the moving plate has one translation motion along the
z and two rotations about x and y axis. Therefore, these motions can be fully
described by the three independent joint variables.

Now, lets us change the configuration to

d =
[
108.7615 114.7896 15.9094

]T (12)

GT
c becomes

GT
c =

⎡
⎣ 0 −1 0 −0.002 0 −0.1

0.866 0.5 0 −0.00305 0.0052 −1
−0.866 0.5 0 −0.0048 −0.0083 −1

⎤
⎦ (13)

Hence, PTM based on Eq. 9 is

PTM =⎡
⎢⎢⎢⎢⎢⎢⎣

0.0001 0 0 −0.0010 −0.0078 0
0 0.0001 0 −0.0078 0.0010 0.0001
0 0 1 0 0 0

−0.0010 −0.0078 0 0.9999 0 −0.0078
−0.007 0.0010 0 0 0.9999 −0.0010

0 0.0001 0 −0.0078 −0.0010 0.0001

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

Previously, it is known that the manipulator moving plate has three indepen-
dent motions (ż, θ̇ and φ̇) correspond to the third, fourth and fifth row of PTM.
However, now at this configuration, the moving plate has another three motions
in the restricted space, i.e., ẋ, ẏ, and ψ̇ corresponding to row one, two and six of
PTM. Hence, these newly emerged motions are regarded as concomitant motion
of the moving platform. Identifying and quantifying these de-centering motions
of the moving plate is quite important in order to utilize or minimizing from the
workspace.
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3.4 Identification of Concomitant Motion

Identification of the type and direction of these motion is automatic for those
who used restriction screw system. Originally, the inverse Jacobian is derived
in the ray order and obviously permitted motion of the platform is in the axis
order

( [
v ω

]T
)
. Thus, first second and third row of Eq. 14 are belongs to the

permitted transnational motion v of the platform while row four to six belongs
to the rotational part. Accordingly, from the type point view the manipulator
contain two transnational and one rotational motions. Their direction is also
along the restricted axis x, y and z, respectively. The overall procedure is outlined
as shown in Fig. 4 and summerized as follow.

i. Set the manipulator at home configuration or have the moving and fixed
platform parallel.

ii. Derive the constraint wrench.
iii. Get the permitted twist of the moving platform (PTM).
iv. Count the linearly independent rows of PTM, identify their type and direc-

tions. These are independent motions of the moving platform.
v. Change manipulator position and orientation.
vi. Again compute the (PTM) matrix in Eq. 9.
vii. Identify the new non-zero rows of PTM matrix.
viii. Determine the type and direction of these new motions at this instant

configuration.
ix. Remove independent motion parameters moving plate from PTM matrix.

The remaining non-zero variables span the concomitant motion.

Determination of their magnitude will be covered in the Sect. 4.

4 Relation of the Parasitic Motion and Independent
Motion

From the previous sections, we know independent motions of the moving plate
are [

0 0 ż θ̇ φ̇ 0
]T

(15)

multiplying Eq. 10 with Eq. 15 gives,
⎡
⎣ẋ

ẏ

ψ̇

⎤
⎦ =

⎡
⎣s13⊥ s11‖ s12‖

s23⊥ s21‖ s22‖
s63⊥ s61‖ s62‖

⎤
⎦

⎡
⎣ż

θ̇

φ̇

⎤
⎦ (16)

Equation 16 is the relation of concomitant and parasitic motion.
For more generic expression, we can establish the following relation by shift-

ing independent motions to the first three rows and the remaining to the last
three rows and transform the matrix to upper block triangular matrix.

[
staI

staD

]
=

[
Me

Iv Me
Iω

0 Me
Dω

] [
stI

stD

]
(17)
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staI =
[
ża θ̇a φ̇a

]T
(18)

staD

[
ẋa ẏa ψ̇a

]T
(19)

In Eqs. 18 and 19 staI and staD are independent and dependent twist of the
moving plate. Me

Iv is a 3 × 3 matrix spanned by independent linear twist of
the moving plate, Me

Iω is 3 × 3 matrix spanned by independent rotational twist
of the moving plate while Me

Dω is another 3 × 3 matrix spanned by dependent
rotational motion of the moving plate. On the left side of Eq. 17, the arbitrar-
ily given independent and dependent motions of the moving plate are shown.

Start

no

Isolate leg

Set initial value
-length, angle  and plate radius

Calculate initial pose  and rotation matrix at given pose

Derive leg Jacobian Derive leg restriction screws

Get extended Jacobain

Check if reciprocity
condition is satisfied

No Yes Transform to change
reference frame

Stack active and passive joint
wrenches and establish G

Solve IRK

Arbitrary plate velocity profile

Modified plate velocity profile

Integrate joint velocity

Update pose and Rotation matrix

U
pdate w

rench m
atrix and m

oving plate vector

Is concomitant
motion

small enough

Yes

No Optimize design parameters

Fig. 4. The general outline of the analysis of concomitant motions
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The upper block triangular matrix that maps the feasible and arbitrary motion
of the moving plate is transformed projection matrix. Rearranging Eq. 17 yields

staD = Me
Dω

(
Me†

Iω

(
staI − Me

IvstI

))
(20)

In 20, Me†
Iω is a moore-penrose pseudo inverse of Me

Iω. By integrating staD

we can get the undesired motion of the moving plate (concomitant motion).
Another option to derive the relation between concomitant and main motion

of the moving platform is using the position level relation. Referring to Fig. 2,
the constraint equation at the position level is exploited. Let R be the rotation
matrix and bi the vector directed from center of moving plate to the center
of spherical joint. Referring to Fig. 2, the position of spherical joints can be
described by

p5,i = pF
M + bi (21)

where, bi = Rb′
i. Hence, Expanded from of Eq. 21 is

p5,1 =

⎡
⎣x + br11

y + br21
z + br31

⎤
⎦ (22)

p5,2 =

⎡
⎢⎣

x − 1
2r11b +

√
3
2 br12

y − 1
2r21b +

√
3
2 br22

z − 1
2r31b +

√
3
2 br32

⎤
⎥⎦ (23)

p5,3 =

⎡
⎢⎣

x − 1
2r11b −

√
3
2 br12

y − 1
2r21b −

√
3
2 br22

z − 1
2r31b −

√
3
2 br32

⎤
⎥⎦ (24)

Due to revolute joint the following position level constraint is imposed on the
motion of spherical joint.

pT
5,is2i‖ = 0 (25)

where, sji‖ is the direction vector of the 1st(2nd) joint of RPS(PRS) mechanisms.

p51y = 0, p52y = −
√

3p52x, p53y =
√

3p53x (26)

Substitute from Eqs. 22 to 24 into 25 gives,

x = −1
2
b(r22 − r11) (27)

y =
1
2
(r21 − 3r12) (28)

Equations 27 and 28 are the concomitant motion of moving platform as a
function of two independent rotational parameters. By taking differentiation of
these equations with respect to independent variables contained in it, we can
obtain their velocity level relation. Figure 5 shows the leg displacement that
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resulted the workspace of the platform including the parasitic motion. Figure 6
shows the comparison of the two mechanisms based on the amplitude of con-
comitant motion generated by the moving plate center due to the respected leg
displacements. As the result indicates, 3PRS and 3RPS manipulator has the
same concomitant (dependent) motion both in direction and amplitude within
the workspace. Geometric parameters of the two mechanisms used in the imple-
mentation of the proposed approach and the numerical simulation are given in
Table 1.

Table 1. Manipulator parameters

PKMs a b l θ in deg ψ in deg

PRS 350 mm 250 mm 657.6473 mm [−50,−50] [0, 360]

RPS 350 mm 250 mm 657.6473 mm [−50,−50] [0, 360]
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Fig. 5. Leg displacements
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Fig. 6. Concomitant motion in the work space
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The rotation matrix used to induce orientation workspace is based on
T-T angle presented in [10]. Since these mechanisms are analyzed as a paral-
lel kinematic machines (PKMs), the set of all feasible pairs of azimuth and tilt
angles are used to define the orientation leaving the torsion angle zero.

5 Conclusion

On the basis of velocity level constraint relation, concomitant motion of lower
mobility parallel manipulators is studied. The method of detection and identi-
fication of these motion of the moving platform is shown in a very simple and
intuitive manner using existing constraint Jacobian without any extra effort of
derivation. As a result, the type, direction and amplitude of concomitant motion
is identified to be independent on their joint arrangements in limbs.
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