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Abstract— We propose a new orientation-aware scene de-
scriptor ReLoc-Aligner for re-localization of a 3D point cloud.
Re-localization within a 3D point cloud map is crucial for
conducting Simultaneous Localization and Mapping (SLAM).
Existing re-localization or place recognition methods of 3D
LiDAR sensor data aim to estimate the current position of
the sensor robustly to orientation changes. However, they do
not determine the current orientation of the sensor within a
3D point cloud map, which limits their applications to re-
localization or loop closing in SLAM. On the other hand,
existing methods capable of orientation estimation tend to be
slower than them. Our scene descriptor has a property of
orientation awareness that enables us to extract the orientation
difference between two scans directly from the descriptor. This
is useful for the registration of point clouds from a good initial
estimate, which leads to better re-localization of a scan. We
propose a training method for the new descriptor. In addition,
we develop fast querying and re-localization methods using
the descriptors. Intensive experiments demonstrate that the
proposed method is superior to the existing state-of-the-art
methods in both place recognition and orientation estimation.

I. INTRODUCTION

Robots and ground vehicles can perform simultaneous
localization and mapping (SLAM) [1] using the 3D LiDAR
scan data, which can be represented as a point cloud.
To create an accurate map with SLAM, a loop closure
detection process is essential, requiring the estimation of
the current robot’s pose. It is also required for a robot to
estimate its pose in a map generated by another robot for
integrating maps created by multiple robots, or collaborative
SLAM [2]. Therefore, to estimate the current robot’s position
and orientation within a global point cloud map or global re-
localization, is a commonly required task. For re-localization,
the current scan point cloud is registered to the global map
through point registration. The sensor pose is iteratively
optimized from an initial pose estimate by maximizing the
point registration. Thus, estimating accurate initial position
and orientation or pose of the sensor is critical.

To find the current position on the global map, research on
place recognition [3] has been conducted. Place recognition
involves searching the database for the most similar scan
data when revisiting previously traveled areas. For fast and
accurate searching, the previous studies represent the 3D
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Fig. 1: ReLoc-Aligner achieves superior performance in the
challenging KITTI08, which has many reverse revisit cases.
This is achieved by accurately matching with close scans,
as illustrated in the bottom figure with a blue boundary,
and by performing successful point registration with accurate
orientation estimation, as depicted in the upper figures with
red boundaries.

scan point cloud as a lightweight descriptor. They also focus
on creating an orientation-invariant descriptor to robustly
recognize its position even during reverse revisits.

PointNetVLAD [4] utilizes PointNet [5] to extract local
features and NetVLAD [6] for aggregation, aiming to create
a global descriptor that is invariant to the input order of
3D point clouds. Lin et al. [7] propose a method for
learning geometric information using an SE(3)-equivariant
encoder to ensure robustness to changes in robot rotation
and translation. LPD-Net [8] suggests an adaptive local
feature extraction module and the graph-based neighbor-
hood aggregation module to create a discriminative global
descriptor. Locus [9] employs SegMap-CNN [10] to ex-
tract features from segments and uses their topological and
temporal relationships. OverlapTransformer [11] leverages a
transformer network to extract discriminative features from
range images and uses NetVLAD to produce yaw-angle-
invariant global descriptors. LoGG3D-Net [12] applies a
local consistency loss and utilizes quadruplet loss [13] to
generate a discriminative global descriptor. It is also yaw-
angle-invariant, which makes it robust to reverse revisits. The
model achieves state-of-the-art performance on KITTI [14]
and MulRan [15] datasets with low computing time cost.
However, generating a yaw-angle-invariant global descriptor
causes the loss of orientation information. To register the



Point Cloud 

Sectorization
Sector Descriptor 

Generation

Scene Descriptor 

Generation

Orientation

Normalization

𝑦

𝑥

Sector 

Descriptor
Scene 

Descriptor

Feature 

Extraction
Aggregation

:  Stack+

O2P+ePN

O2P+ePN

+

SPV-Conv

SPV-Conv

Sector 

point clouds
Point 

Feature 

Shared Weight

[ Top view ] [ Top view ]

Fig. 2: The overall structure of the proposed orientation-aware scene descriptor generation from a scan. A point cloud
from a 3D LiDAR scan is divided into NS sectors radially. The orientation of each sector point cloud is normalized to the
orientation of the red sector. Points in each sector are described as a single sector descriptor by point feature extraction and
aggregation. A scene descriptor is finally built by stacking NS sector descriptors in order.

scan, additional orientation estimation process is required.
Unlike these models, OverlapNet [16] estimates the differ-

ence of orientations between scans, contributing to the loop
closure process. Oreos [17] suggests a network for orienta-
tion estimation using a regression loss function. IRIS [18]
is generated by encoding the height information from the
surrounding point cloud. Using the Fourier transform to esti-
mate the translation between IRIS images helps in estimating
the orientation difference between scans. Scan Context [19]
preserves orientation information when representing a scan
as a descriptor. It robustly recognizes positions during reverse
revisits and estimates the orientation difference between the
current scan and the most similar one in the database,
demonstrating state-of-the-art performance across various
datasets. Intensity Scan Context [20] also estimates the
orientation difference between a scan pair using geometrical
and intensity information.

However, the models that preserve orientation information
show significantly low accuracy of place recognition in the
cases of revisiting with positional offsets, and the search
process is time-consuming. Therefore, it is required to have
a scene descriptor that not only preserves orientation infor-
mation but also enables fast and accurate estimation of both
position and orientation as shown in Fig. 1.

The main contributions of our paper are summarized as
follows:

• We propose a new orientation-aware scene descriptor,
ReLoc-Aligner, which describes a scene as an ordered
set of descriptors for radially divided sections.

• We propose a training method for the new descriptor for
features in each sector to be consistent under some po-
sitional offset, while they are still sufficiently distinctive
to those in the other sectors.

• We propose a method for fast re-localization that aligns
the orientation between scans in advance using the
orientation-aware property of the proposed descriptor.
We can further accelerate the search for the closest scan
across the scan database by analyzing the patterns of the
proposed descriptors.

• We demonstrate the superior performance of the pro-

posed ReLoc-Aligner to the current state-of-the-art
methods in both a place recognition task and a final
re-localization task through intensive experiments with
the KITTI and MulRan datasets. Notably, we show that
our descriptor achieves excellent results compared to
others in KITTI08 which includes many reverse and
orthogonal revisit cases.

II. METHOD
In this section, we propose a novel orientation-aware scene

descriptor, ReLoc-Aligner, and a training method for the
descriptor. We also present two fast re-localization methods
to estimate a vehicle’s position and orientation within a
global map.

A. Orientation-aware Scene Descriptor

Extracting an orientation-aware scene descriptor
ReLoc-Aligner from a raw point cloud takes four steps,
as shown in Fig. 2. We divide the point cloud into radial
sections, which are called as sectors. Each point cloud in
each sector is transformed into a sector coordinate system to
consistently describe its original geometry. Then, geometric
features are extracted from each point cloud to create
a sector descriptor. We build a orientation-aware scene
descriptor by stacking the sector descriptors in order.

1) Point Cloud Sectorization: Scan data from a 3D Li-
DAR can be represented as a 3D point cloud P ∈ RNP×3,
consisting of NP points with x, y, and z position values. We
divide a point cloud radially into NS equal-sized sections,
referred to as sectors, as shown Fig. 2. We set NS as 60.
Each sector’s point cloud is referred to as a sector point
cloud PSi . The sector index i starts from 0 at the heading of
the 3D LiDAR, and increments by 1 in the counterclockwise
direction. Each point cloud PSi in sector i is used to generate
a sector descriptor S(PSi).

This sectorization idea is inspired by Scan Context [19].
While it separates the point cloud into multiple bins by divid-
ing it in both azimuthal and radial directions and extracts a
single representative value from each bin, we describe all the
points in a radial sector to accurately encode the geometry
in the sector.



2) Sector Orientation Normalization: To preserve the
local geometry information, we normalize the orientation
of each sector point cloud PSi . A sector point cloud is
normalized as, P ′

Si = Rθi · PSi , where Rθi is the rotation
matrix for the yaw rotation θi =

2π
NS

· i.
3) Sector Descriptor Generation: Each normalized sector

point cloud is compactly represented as a sector descriptor.
We use a network-based sector descriptor generation method,
which encodes the point cloud into high-dimensional features
and compresses these into a lightweight sector descriptor.
The descriptor generation method from [12] is utilized for
generating a sector descriptor. A SparseConv U-Net [21] is
used to extract a d-dimensional geometrical feature f(p) ∈
Rd for each point p. Then, second-order pooling and eigen-
value power normalization (O2P+ePN) [22]–[24] is used
to compress the point features to a d2-dimensional sector
descriptor S(PSi) ∈ Rd2

. We set d as 16.
4) ReLoc-Aligner Generation: By stacking the sector

descriptors, a single scene descriptor g(P), which is called
ReLoc-Aligner is generated. The order of stacking follows
the sequence of yaw angles from the sector point clouds,
aligning them in a counterclockwise direction. The ith row
of the scene descriptor represents the ith sector descriptor
g(P)i = S(P

′

Si), ranging from 0 to NS − 1.
The structure of the scene descriptor ensures both the

preservation of a geometrical feature of each sector point
cloud and the order of sector orientation. Compared to other
models’ global descriptors [4], [9], [12], the proposed scene
descriptor has capabilities not only for place recognition but
also for orientation retrieval. We will explain how to use
the proposed descriptor efficiently for the re-localization in
Section II-C.

B. Training ReLoc-Aligner

To achieve precise re-localization, each sector descriptor
should be consistent under orientation differences and should
be distinct to those of the other sectors. We propose sector-
based loss functions for point features and a scene descriptor,
refined from the loss function described by [12].

To train ReLoc-Aligner, a training set consisting of an
anchor scan aP , a set of positive scans {Ppos}, a set of
negative scans {Pneg} and one of the other negative scans
oP from a 3D LiDAR scan sequence is required. The ground
truth positions of an anchor, positive, negative, and the
other negative scan are represented as xa, xpos, xneg and
xo, respectively. A scan is classified as a positive scan if
its location is closer than τpos from the anchor scan, i.e.,
D(xa, xpos) < τpos. A scan is classified as a negative
scan if its location from the anchor scan exceeds τneg , i.e.,
D(xa, xneg) > τneg . A scan is classified as the other negative
scan if τpos < D(xa, xo) < τneg . In this paper, we set τpos
as 3 and τneg as 20.

1) Point Feature Loss in a Sector: A point corresponding
to the same location is trained to have a consistent feature
f(p), regardless of the sensor’s orientation in the global map.
Each point should also have a distinctive feature even from
other points within the same sector. To achieve this, we use

Anchor scanPositive scan : Corresponding
: Non-corresponding

Fig. 3: The process for obtaining point feature loss. The cor-
responding and non-corresponding points of the blue point
from the anchor scan are selected within the corresponding
sector of the positive scan.

the Hardest-Contrastive loss [25] between two nearby point
clouds.

Specifically, an anchor point cloud aP and a positive point
cloud pP , which is randomly selected from the positive set
{Ppos} are used for training the point feature. To find the
pairs of correspondences between two point clouds, Iterative
Closest Point (ICP) [26] is used to align the point clouds aP
and pP , utilizing initial ground truth relative pose.

An anchor point api from aP finds a corresponding point
ppj from pP if D(api,

p pj) < ρ, where ρ represents the
distance threshold. In Fig. 3, the blue points in the positive
and anchor scans are corresponding points. We define the set
of point correspondences C between an anchor point cloud
and a positive point cloud. We also define a set of points’
index Qi, randomly selected from the sector that contains
ppi. Based on a corresponding pair set C and a set of the
possible Q, the point feature loss can be defined as follows:

Lp =
∑

(i,j)∈C

{[
∥f(api)− f(ppj)∥22 −mpos

]
+
/ |C|

+ λIi

[
mneg − min

k∈Qj

∥f(api)− f(ppk)∥22

]
+

/Ni

+ λIj

[
mneg − min

k∈Qi

∥f(ppj)− f(apk)∥22

]
+

/Nj

} (1)

where mpos, mneg and λ are the positive, negative scalar
margins and a scalar weight, respectively. We set these
hyperparameters as 0.1, 2.0, and 0.5. The indicator function
Ii is 1 when D(api,

p pk) > ρ and 0 otherwise. The total
count of valid Ii cases is represented as Ni, while Nj

accounts for the Ij cases. The ReLU function [·]+ prevents
loss from falling below zero.

2) Scene Loss: We propose a loss function based on the
comparison between sectors for training a scene descriptor,
refined from quadruplet loss [13]. The purpose of the loss
function is to ensure that an anchor and its positive scans
generate similar scene descriptors under orientation differ-
ences, while an anchor and its non-positive scans generate
distinct scene descriptors. We consider not only the ground
truth position but also the orientation to enhance the scene
descriptor’s capability for place recognition and its orienta-
tion awareness.
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Fig. 4: Overall process to obtain scene descriptor loss for training ReLoc-Aligner. The feature distance between the anchor
and its positive scan, aligned by the ground truth orientation difference, is used for the training. For the non-positive pairs,
the smallest feature distance among whole distance cases of circular row shifts is used.

The methods for calculating the feature distance between
the anchor and the positives and for the non-positives
(negative and other-negative) scene descriptors are different.
The anchor and positive point clouds are scanned within a
sufficiently close distance of τpos, and the point registration
between those is possible. By registering those point clouds
to each other, the orientation difference θp between the
two point clouds can be determined. As shown in Fig. 4,
the anchor and positive scene descriptors are aligned by
circularly shifting the rows with the ground truth orientation
difference θp, where h =

NS ·θp
2π is the amount of row shift.

The feature distance for the anchor scene descriptor g(P1)
and positive scene descriptor g(P2) is calculated as

d(h, g(P1), g(P2)) =
1

R

NS−1∑
r=0

[
V
∥∥g(P1)r −h g(P2)r

∥∥2
2

]
(2)

where V (r, g(P1), g(P2)) is a validity indicator V that indi-
cates the availability of the sensor data when some part of the
sensor data can not be used by self-occlusion with parts such
as a sensor fixture. Unavailable sensor data are set to be zero,
and the indicator function is 0 when the inner product of the
r-th rows in the two scene descriptors is 0, 1 otherwise. The
sum of all the validity indicators V is represented as R.

The feature distance between the anchor and non-positive
scene descriptors is defined as the smallest feature distance
among all comparison cases of circular row shifts, as shown
in Fig. 4. The purpose of training is to distinguish the anchor
and negative scene descriptors, even when the difference is
as minimal as possible.

dn(g(P1), g(P2)) = min
k∈[0,NS−1]

{
d(k, g(P1), g(P2))

}
(3)

Among the positive set {Ppos}, a positive scan which has
the largest feature distance with the anchor is defined as the

hardest positive scan Php, as follows

Php = argmax
Ppi∈{Ppos}

d(hi, g(
aP), g(Ppi)) (4)

where hi is the amount of circular row shift between g(aP)
and g(Ppi).

ReLoc-Aligner loss is defined as

Lg =

n∑
i=1

{
[d(g(aP), g(Php))− dn(g(

aP), g(Pnegi)) + α]+

+ [d(g(aP), g(Php))− dn(g(
oP), g(Pnegi)) + β]+

}
(5)

where n is the number of {Pneg}, α and β are scalar
margins. We set n as 2, α as 0.5 and β as 0.3.

Then, the total loss is defined as

L = Lp + Lg (6)

C. Re-localization Method

Re-localization is the process of determining the position
and yaw angle within a global map. This involves identifying
a position by searching for the most similar scan in the
database whose scene descriptor should be closely matched
to the scene descriptor of the query scan. The search for
the closest resemblance includes performing a circular row
shift on each reference descriptor and calculating the cosine
distance between it and the query. This process is repeated
NS times for each reference, referred to as a full shift-
based comparison. For each reference, the smallest cosine
distance across all comparison cases indicates the difference
between the two descriptors. The full shift-based comparison
is carried out for all references, and the one with the least
difference from the query scene descriptor becomes the
matching candidate.
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Thus, the difference between two scene descriptors g(P1)
and g(P2) is defined as:

min
k∈[0,NS−1]

{
1− 1

R

NS−1∑
r=0

[
V

g(P1)r ·k g(P2)r
∥g(P1)r∥ · ∥kg(P2)r∥

]}
(7)

where R, V follows Eq. (2). The amount of shifted rows
k can be converted into yaw angle θyaw = 2πk

NS
. The

full shift-based comparison method is inspired by Scan
Context [19] and shows good accuracy for our model as
well. However, repeating the process NS times to obtain a
minimum value is time-consuming and thus inefficient. In the
KITTI00, it takes 18 seconds for a query to search through
a database containing 2,127 descriptors. We develop faster
search methods to reduce this computational burden in the
full shift-based comparison.

1) Peak Orientation Indices: We observe that the element-
wise sectional maximums in the proposed scene descriptor
appear in similar patterns under orientation variations and
small positional changes. As illustrated in the left top in
Fig. 5, we extract the orientation indices of the peak de-
scriptor values.

The peak orientation indices (POI) is formed as a d2-
dimensional vector as :

m(g) = (r(c0), ..., r(cd2−1)), (8)

where r : ci → R. r(ci) extracts argmax value of each
column value set ci as follows,

r(ci) = argmax
j∈{0,1,..,NS−1}

cij , (9)

where cij means a jth value of ci. Each scene descriptor has
a fixed POI vector.

2) Orientation-first matching using POI: Under orienta-
tion variation, the scene descriptor becomes circular row-
shifted as described in Section II-C, and the POI should have
the same offset in each element, ideally. The offset implies
the relative orientation difference.

The element-wise offset dci between the query and refer-
ence POI is calculated by

dci =

{
m(g1)i −m(g2)i +NS if m(g1)i −m(g2)i < 0,

m(g1)i −m(g2)i otherwise.
(10)

where i is an index of the column. To find the maximum
likely offset between two POIs, we count the occurrences
of offsets dC = {dc0,d c1, ...,d cf2} as a histogram resulting
in an NS-dimensional vector. The offset with the highest
frequency tends to be the amount of row shift for the refer-
ence, and it represents the orientation difference between two
scans, as shown on the right in Fig. 5. This simple process
is executed in a batch for all reference descriptors at once.
Each reference descriptor is directly aligned by circularly
shifting with the offset. This reduces the computational cost
significantly by removing the NS-repeating circular row
shifts in the full shift-based comparison, without loss of
accuracy.

3) Faster Re-Localization Method: The orientation-first
matching using the POI reduces the computational cost a lot.
However, it still requires performing the circular row shifts
and measuring the cosine distances for all descriptors in the
database. To achieve even faster querying, we introduce a
method for selecting the best candidate based on the variance
of the POI histogram.

If two scene descriptors generated at nearby positions
differ only by the amount of yaw angle, the resulting column-



KITTI MulRan
00 02 05 06 07 08 mean K1 K2 K3 D3 R2 mean

ScanContext [19] 0.966 0.871 0.914 0.985 0.698 0.610 0.841 0.954 0.969 0.994 0.893 0.826 0.916
PointNetVLAD [4] 0.909 0.637 0.859 0.924 0.171 0.437 0.656 0.952 0.856 0.979 0.685 0.868 0.868
Locus [9] 0.983 0.762 0.981 0.992 1.000 0.931 0.942 0.938 0.874 0.969 0.718 0.994 0.899
LoGG3D-Net [12] 0.953 0.872* 0.976 0.977 1.000 0.876* 0.942 0.966 0.938 0.991 0.977 0.969 0.968
ReLoc-Aligner 0.987 0.884 0.972 0.998 0.943 0.970 0.959 0.995 0.993 0.998 0.950 0.972 0.982
ReLoc-Aligner (Fast) 0.982 0.883 0.965 0.989 0.926 0.946 0.949 0.982 0.958 0.998 0.876 0.976 0.958

TABLE I: Result of place recognition with F1max on the KITTI and MulRan datasets. *For each query scan pose, we
determined whether a revisit case exists within 3 meters of the query pose in the database poses and re-evaluated accordingly.
We used the pre-trained models provided by the authors.

wise offsets dC will exhibit consistently similar values. Oc-
currence counts or the histogram of the column-wise offsets
are depicted in Fig. 5. For a matched pair, the significant
peak is observed in the histogram as illustrated by A in
Fig. 5. In contrast, it is not observed for unmatched pair as
shown in B. To measure the consistency of the column-wise
offsets, we simply calculate the variance of their occurrence
counts, which tends to be greater for matched pairs. We
select the scan with the highest variance of the occurrence
counts as a candidate match. By performing a row shift only
once and measuring cosine distance for the best candidate
scene descriptor, faster re-localization than previous methods
becomes achievable. The computational cost is significantly
reduced by removing the full comparison in the database.

4) Pose Refinement: The position and orientation in the
global map can be refined by point registration between the
query and the candidate scans. Because the proposed retrieval
methods can choose the scan close enough as well as its
relative orientation, a simple ICP can be used for accurate
point registration with a good initial guess as shown on the
left bottom in Fig. 5.

III. EXPERIMENTAL EVALUATION

A. Dataset

KITTI : The KITTI dataset consists of 11 sequences,
numbered 00 through 10. Each contains point cloud data
scanned with the Velodyne HDL-64E along with ground
truth scan poses. Sequences include forward, orthogonal,
and reverse revisit cases. Specifically, sequence 08 includes
multiple reverse and orthogonal revisit cases, making it
particularly useful for assessing the robustness of reverse
revisit. We train our model on 10 of these sequences and use
the remaining one sequence for evaluation. Model evaluation
is carried out on 6 sequences: 00, 02, 05, 06, 07, and 08.
Therefore, we trained six models for evaluation, each with a
different sequence.

MulRan : The MulRan dataset includes ground truth
scan poses and point cloud data scanned with the Ouster
OS1-64. It features occlusions, resulting in a lower overlap
ratio between scans during reverse revisits. Additionally,
it contains revisit cases with both rotation and translation
applied, presenting a more challenging localization problem
compared to other datasets. For model training, we utilize
the DCC 01, 02, and Riverside 01, 03 sequences, while for

evaluation, we use the KAIST 01, 02, 03, DCC 03, and
Riverside 02 sequences.

B. Place Recognition Result

The place recognition capability of the proposed descrip-
tor is evaluated using the F1max metric, which leverages
precision and recall, as shown in Table I. A pair of a
query and the candidate descriptor is defined as positive if
the cosine distance is less than or equal to threshold, and
negative otherwise. The criteria for true and false positives
are determined based on the physical pose distances between
the query and candidates, whether it is less than or equal to 3
meters or more than 20 meters, respectively. True and false
negatives are determined based on whether a revisit case
exists within 3 meters of the query pose. The database used
for comparison with each query includes scan data before the
query timestamp, excluding the t seconds prior to the query.
For KITTI evaluation, t is set to 30, while for MulRan, it is
set to 90. We evaluates the capability using our model, Scan
Context [19], PointNetVLAD [4], Locus [9], and LoGG3D-
Net [12], as conducted in the experiment of [12]. Our model,
ReLoc-Aligner is evaluated in two versions: the default and
the fast version. The default version from Section II-C.2
involves measuring cosine distances of all descriptors with a
row shift after orientation estimation, while the fast version
from Section II-C.3 selects a single candidate based on the
variance of the POI offset histogram.

ReLoc-Aligner achieved the best mean score on both
KITTI and MulRan datasets. It showed significantly better
results in KITTI08, which consists only of reverse and
orthogonal revisits, with a score of 0.970. This is about 4%
and 10% better than the state-of-the-art methods Locus and
LoGG3D-Net, respectively. For the KAIST 01-03 sequences
of MulRan dataset, which consists of many rotational and
translational revisits, the proposed methods also achieved
results exceeding 0.99. The fast version of ReLoc-Aligner
showed comparable results to existing state-of-the-art models
in both the KITTI and MulRan datasets. In KITTI08, it
achieved an excellent score of 0.946, outperforming other
models. We demonstrate that both versions of our model,
ReLoc-Aligner, are robust in recognizing position regardless
of orientation and positional differences compared to previ-
ous scan data.



TABLE II: Result of relative rotation and translation errors between matched scans on the KITTI dataset.

Sequence 00 Sequence 08
Success RE [deg] TE [m] Success RE [deg] TE [m]

LoGG3D-Net [12] 96.1% 6.128 2.757 0 % 159.657 35.907
Scan Context [19] 100% 0.010 0.008 86.3 % 9.616 14.22
ReLoc-Aligner 99.7% 0.018 0.445 96.7% 0.083 5.471
ReLoc-Aligner (Fast) 99.9% 0.017 0.151 98.5% 1.383 1.890

TABLE III: Result of relative rotation and translation errors between matched scans on the MulRan dataset.

Approach KAIST 03 DCC 03
Success RE [deg] TE [m] Success RE [deg] TE [m]

LoGG3D-Net [12] 98.5% 0.803 0.909 92.6% 11.218 1.690
Scan Context [19] 100% 0.008 0.003 81% 5.623 46.343
ReLoc-Aligner 100% 0.009 0.154 96.9% 0.125 5.229
ReLoc-Aligner (Fast) 99.9% 0.010 0.317 99.7% 0.029 0.784

0 50 100 150
Degrees

0

25

50

75

100

125

150

175

200

C
um

ul
at

iv
e 

re
vi

si
t c

ou
nt

s

LoGG3D-Net
Scan Context
ReLoc-Aligner
ReLoc-Aligner (Fast)

(a) Relative Rotation Error.
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(b) Relative Translation Error.

Fig. 6: Cummulative counts of detected revisits on rotation
and translation error. It was measured between the query and
the positive candidates from KITTI08.

C. Pose Refinement Accuracy

In this section, we evaluate the accuracy of the relative
transformation between the query and a candidate scan as
estimated by each model. The sequences used for evaluation,
KITTI00 and KAIST03 are the sequences with a relatively
high number of forward revisits. KITTI08 is composed of
revisits in reverse and orthogonal directions, and DCC03
involves a significant number of revisits with reverse and
translation.

The results for KITTI are detailed in Table II, and for
MulRan in Table III. The success rate refers to the percentage
of the correctly identified pairs of a query and candidate scan
as positive pairs. For a correct pair, its physical pose distance
is less than 3 meters, its relative rotation error is less than
5°, and its translation error is less than 2 meters. The relative
rotation error (RE) and the relative translation error (TE) are
measured as the average difference between the 6D ground
truth and the estimated 6D relative transformation after ICP
registration between a query and its positive match.

The comparison of RE and TE results includes both
the default and fast versions of the ReLoc-Aligner, as well
as state-of-the-art models. This includes the LoGG3D-Net,
known for its superior place recognition capabilities, and the
Scan Context, noted for its exceptional ability to estimate the
yaw angle between a scan pair. LoGG3D-Net conducts ICP

using the identity matrix as the initial transformation. For our
model and Scan Context, the estimated relative yaw angle
between the pairs is provided as the initial transformation
for ICP.

Our model and Scan Context show success rates close
to 100% in KITTI00 and KAIST03 mainly composed of
forward revisit cases. Notably, both the default and fast
versions of ReLoc-Aligner exhibit significantly lower RE
and TE results in KITTI08 and DCC03 compared to other
models. In KITTI08, the fast version demonstrates about
8° and over 13 meters lower RE and TE results than Scan
Context, and about 6° and 46 meters lower results in DCC03.
Moreover, it demonstrates exceptional performance across
all four sequences, achieving less than 1.5° of the RE and
less than 2 meters of the TE. When executing SLAM in an
unknown environment to the robot, the map is built based on
the estimated re-localization results, without prior knowledge
of the correct result. Lower RE and TE values indicate
that it contributes to accurate loop closure detection and the
creation of integrated maps using multi-robots during SLAM
operations.

We also evaluate the result of the relative rotation and
translation error before point registration within KITTI08,
as shown in Fig. 6. It shows the cumulative counts of the
detected revisits, which are used for initial poses for the
ICP registration. This result demonstrates that the proposed
methods chose more and better candidates even in their
detection stage. Specifically, both versions of our model
could find more positives with relative rotations of less than
5 degrees than the other state-of-the-art methods. For the
evaluation of relative translation error, both versions of our
model could find more positives within a small error margin
of less than 2 meters than the others, with the majority of
the error distribution existing within 3 meters.

D. Computation Time

We measured the time cost for offline and online processes
with the KITTI00. For the offline test, all the scans from
the sequence were used as candidates. For the online test,
we ran the modified SLAM implementation of [27] and
selected keyframe scans every 2 meters or in every 10°. In
the common description task for the two tests, it took 175ms



TABLE IV: Analysis for re-localization computation time :
Average time costs on KITTI00 (in ms).

Offline Test Online Test
ReLoc-Aligner 352 65
ReLoc-Aligner (Fast) 15 4

to complete. When performing a re-localization task, the
computation time for the default and fast versions of ReLoc-
Aligner are noted in Table IV. The default and faster versions
of our methods took 352ms and 15ms, respectively, in the
offline tests. In the online SLAM tests, it operates much
faster with times of 65ms and 4ms, respectively. In both tests,
we used a system with an i9-10900 CPU, 64GB RAM and
a GPU of a RTX 4090Ti. We implemented the algorithm in
Python, and we expect significant speed-up when processed
in C++.

IV. CONCLUSION
In this paper, we propose a new orientation-aware scene

descriptor ReLoc-Aligner, which describes a scene as an
ordered set of local descriptors for radially divided sectors.
The existing scene descriptors for place recognition are
usually designed to be rotation-invariant, but it makes the
point registration and re-localization significantly harder. The
orientation awareness of the proposed descriptor is useful
to register two 3D scan point clouds without additional
matching or registration. We propose a training method
for the new descriptor to be consistent under orientation
variation, while it can still have enough distinctiveness to
each other. We also develop fast re-localization methods
using the proposed descriptor by analyzing its patterns under
rotation and translation. Various and intensive tests show that
the proposed descriptor can achieve better performance on
place recognition and make it possible to re-localize scans
in various revisit directions by point registration.
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