
Efficient Target Singulation with Multi-fingered Gripper using
Propositional Logic

Hyojeong Kim1,2, JeongYong Jo1,3, Myo-Taeg Lim2 and ChangHwan Kim1,∗

Abstract— When multiple tablewares are closely packed on a
table, rearranging obstacles to make space is necessary to grasp
the target, often called target singulation. Due to the nature
of handling fragile tablewares (i.e. plates, bowls), we make
a few assumptions for the target singulation problem. First,
tableware is grasped with a multi-fingered gripper; second,
rearrangement is based on prehensile motions like pick-and-
place. Under these assumptions, we aim to generate a relocation
plan that guarantees global optimality. Furthermore, if any
relocation plan cannot singulate the target, we aim to determine
it quickly. Therefore, we propose a search method that utilizes
the relationship between the object and its nearby obstacles
expressed in propositional logic. We define the problem as
determining logical entailment (i.e., whether the target can be
singulated) and expand the search tree from the target while
generating an optimal relocation plan. We demonstrate the
performance of our algorithm by increasing the number of
objects and validate the plan in a simulation environment.

I. INTRODUCTION
Manipulation planning in clutter is still an actively re-

searched area. In this paper, we assume a table clearing
scenario where a robot clears tableware after people have
finished eating. In such scenario, it is easy to imagine a
situation where the space between dishes is too narrow for
the robot to grasp a target dish. Then, some obstacles should
be relocated to make enough space for grasping the target
object, which is often described as a rearrangement problem
for target singulation. Unfortunately, sequentially deciding
which object needs to be relocated and where to is known
to be NP-hard [1].

Singulation has been focused on utilizing non-prehensile
motions such as push. However, non-prehensile motions are
not always desirable depending on environmental constraints.
For instance, pushing dishes on a table can be considered
unsafe since most tableware is fragile, and it is important to
ensure that dishes do not leave the table area. However, on
a densely cluttered table, the table boundary might be too
tight, leaving too little room to push. Moreover, it is difficult
to model push dynamics due to the physical characteristics
of tablewares. Therefore, precise prehensile motions such as
pick-and-place are required for singulating tablewares.

For object rearrangement with prehensile motion, it is nec-
essary to consider spatial requirements to ensure a collision-
free grasp. The space required for the gripper varies de-
pending on grasping method, gripper shape, and size. Fig. 1

1Korea Institute of Science and Technology, Seoul, Korea:
Emails {hyojeongk82, jjy0607, ckim}@kist.re.kr.
2Department of Electrical Engineering, Korea University, Seoul, Korea.
mlim@korea.ac.kr 3Department of Interdisciplinary Robot
Engineering Systems, Hanyang University, Ansan, Korea. ∗Corresponding
author.

Fig. 1: Left: Table-clearing robot with 3-finger gripper. The
table is densely filled with dishes. The target dish (blue star)
is not graspable without rearranging the surrounding dishes.
Right: An example of a target’s local obstacle set, which
collides with the gripper (red region). If the ones in the
set are also not graspable, then additional obstacles must
be relocated in order to make them graspable.

shows our table-clearing robot with a multi-fingered gripper,
designed for handling tablewares with overhead grasping. To
grasp an object with such a gripper, we need to consider
whether there is enough space to insert the gripper into
the clutter without any of the fingers colliding. Let’s say
the obstacles within the radius of the gripper for a target
object are referred to as local obstacles. According to the
rotational angle of the gripper for grasping the target, the set
of obstacles to be relocated can be determined. However,
it is not sufficient to only consider the local obstacles,
since those obstacles might not be graspable. Therefore, for
target singulation, a global relocation plan, which takes into
account all obstacles on the table, must be generated.

The obstacles to be relocated depend on the rotational
angle of the gripper at which the target object is grasped.
Therefore, finding a globally optimal relocation plan is
difficult. Moreover, it is not always possible to generate a
relocation plan using only prehensile motion. For example,
consider cases where objects are tightly packed, making it
impossible to relocate any object, no relocation plan would
enable target singulation, and we refer to these situations
as deadlocks. Especially, the more cluttered the table is, the
higher the likelihood of occurring deadlock.

To summarize, we aim to solve the target singulation
problem by relocating obstacles with prehensile motion using
a multi-fingered gripper. There are two main issues to be



addressed. First, we need to determine if there exists a
relocation plan that can singulate the target using prehensile
motions. Second, we need to find an optimal plan that can
singulate the target with the least number of relocations.

Our key idea to solve the problem is as follows: (1)
Convert the target singulation problem to a logical entailment
problem, which is assessing the logical validity of singulating
the target based on environmental conditions. (2) Use a polar
histogram to identify all local obstacle sets for each object
and express it in a logical form. (3) Propose a polynomial-
time graph search algorithm that employs backward chaining
to determine whether a relocation plan exists, while finding
a globally optimal relocation plan for target singulation.

II. RELATED WORK

A. Rearrangement on tabletop

Tabletop rearrangement for singulation has been focused
on utilizing non-prehensile motion. Cogsun et al. [2] sug-
gested a search-based planner generating a sequence of
push actions for making space for the target object to be
placed within the table area. However, these model-based
approaches require accurate push dynamics. Huang et al. [3]
solved various large-scale tabletop rearrangement problems
such as singulation, repositioning, and sorting etc. The author
suggested an online local search method that iteratively
replans after executing each push action. Each local search
finds the best push action that minimizes the distance to
the goal by evaluating policy rollouts in simulation. Several
papers [4], [5] trained a push and grasp policy jointly for sin-
gulation using model-free deep reinforcement learning. The
grasp policy serves as a discriminator to determine whether
the target is graspable, while the push policy greedily selects
which object to push and in which direction to make the
target graspable. However, it is difficult to find a global
optimal plan. Furthermore, the space required for the gripper
is often overlooked.

B. Rearrangement on shelves

Rearrangement on shelves involves taking the target object
out of a cluttered and confined space (e.g., shelf, fridge).
Since they assume cases where the target is obscured by
other obstacles, it is important to consider the space needed
by the gripper to retrieve the target object without collision.
Various search-based methods have been proposed to retrieve
the target by minimizing the number of relocating obstacles
in the shelve. Each method focuses on reducing the search
time by guiding the search in different ways. Lee et al.
[6] proposed MVFH+ for verifying the accessibility of the
target. By drawing a polar histogram around the target, it
recursively determines which obstacles should be removed.
Lee et al. [7] also proposed a heuristic search approach to
minimize the number of rearrangement actions, considering
both prehensile and non-prehensile motion. Nam et al. [8]
construct a traversability graph, which represents collision-
free path existences between two object poses, and use it to
guide the search algorithm. Saxena et al. [9], [10] considered
only non-prehensile motion and formulated the problem as

a Multi-Agent Pathfinding (MAPF). By decomposing the
process into two phases—first finding an abstract MAPF
plan and then motion planning—they were able to find the
rearrangement plan efficiently.

III. PROBLEM DESCRIPTION

We assume a densely cluttered environment where there
may not exist a collision-free grasp for the target object. To
grasp the target without collision, it is necessary to relocate
surrounding obstacles to create enough space for grasping
the target. We define a tabletop rearrangement problem for
target singulation under the condition of relocating within a
table area with prehensile motion using k-finger gripper.

The major assumptions of this problem are as follows:
(i) All objects have a circular shape. The configuration of all
objects (i.e., pose and size) is known. (ii) There is always free
space available within the table area to relocate the object,
and stacking on top of another object is not allowed. (iii) The
gripper has a symmetrical structure composed of k fingers,
with uniform angles between fingers θk = 360/k. (iv) Only
overhead grasping is allowed.

An environment is configured with N objects including
target: O = {o1, o2, ..., oN−1, t}. The goal is to determine
whether there exists a global relocation sequence Os that
enables the grasping of the target object t, and if Os exists,
to minimize the number of relocations. More formally, we’d
like to determine KB |= t while finding min |Os|. We
represent ‘An object is graspable’ as ‘Corresponding literal
is True’. Therefore, determining whether t is entailed by
KB is equivalent to determining whether the target can be
singulated enough to grasp.

We employ graph search to solve this problem. The search
tree is constructed by expanding the local obstacle set of the
parent object as children. Each node N consists of three
components: (1) Oc, objects to be relocated for current node
N , which is in the form of conjunctive clause. (2) OR

s , list
of objects to be relocated until node N , which is a reverse
order of relocation sequence. (3) cost, the cost of relocation
sequence from the root node to node N , which we defined
as the length of Os.

IV. METHOD

We propose a method for computing an efficient relocation
plan for target singulation, which consists of the following
three steps. (1) Identify the local obstacle set for each
object using TG-MVFH+ and construct a knowledge base
from it. (2) Find the optimal relocation sequence for target
singulation while determining whether the target can be
singulated via relocation by utilizing a backward chaining
style graph search. (3) Determine the relocating position for
each object in the sequence obtained from (2).

A. Identify local obstacle set with TG-MVFH+

In this section, we describe a modified version of MVFH+
for k-fingered Top Grasping, which we call TG-MVFH+.
From the modified polar histogram, we identify the local ob-
stacle set for a target object and represent it in propositional



(a) The angle occupied by a fin-
ger denoted as γt, when grasp-
ing the target with a radius of
rt using 3-finger gripper.

(b) The angle occupied by ob-
ject i denoted as γi and the
angle γtotal, which is expanded
by the gripper.

Fig. 2: (a) shows the gripper closing after approaching
the target with an additional radius rg . In (b), All obsta-
cles(orange) within the radius rg from the target(blue) are
uniformly enlarged by γt/2 on both sides.

logic. Then, we obtain a Knowledge Base by determining
the local obstacle sets for all objects.

MVFH+ was proposed to determine the approach direction
of the manipulator for retrieving the target object located
in a cluttered shelf [6]. To generate a collision-free motion
plan for grasping a target, a polar histogram is computed
by the density of surrounding obstacles with consideration
of physical constraints. In [6], the author assumed lateral
grasping for taking the target object out from the cluttered
shelf and generated a polar histogram accordingly. On the
other hand, we assume overhead grasping with a k-finger
gripper for the tabletop rearrangement problem. Therefore,
we modify the process of generating a polar histogram ac-
cordingly and introduce an additional process for identifying
the local obstacle set from the polar histogram.

We denote the required radius for the gripper to grasp an
object as rg and the width of the finger as wf as shown in
Fig. 2a. Then, we can determine the angle γt of the area
occupied by a single finger when grasping a target t with
a radius of rt. For a target t, we only compute the polar
histogram of local obstacles, which refers to objects within
the rg area around t. Fig. 2b shows each local obstacle oi
with radius ri, located at a distance di from the target. The
angle γi of the area occupied by each of local obstacles oi
can also be defined. To prevent collision between the gripper
and oi when grasping t, γi needs to be enlarged by γt, which
is the amount of angle that the gripper requires.

The polar histogram refers to the obstacle density for each
angular sector around the target. For each angular sector z,
ranging from 0 to 360 deg, the polar histogram of oi for
target oj is computed as follows.

Hj
i (z) =

{
(ci)

2(a− bd2i ), if z ∈ [βi − γtotal

2α , βi +
γtotal

2α ]

0, otherwise
(1)

where ci is the coefficient that indicates the certainty of
sensor measurements, βi represents the angle from the target

Fig. 3: An example of the local obstacle set for target
t (Above) and its representation as a propositional logic
(Below). The four figures above show the local obstacle set
Sz
t with different z values. Sz

t refers to the set of objects
that must be relocated to grasp the target in the rotational
angle z. The target becomes graspable if at least one of Sz

t

is relocated. Therefore, it can be expressed as an implication
sentence with a premise in DNF and the target as below.

to oi. This paper assumes environments with definite mea-
surements, so ci is set to 1. α denotes the angular resolution,
which describes the degree to divide the sectors of the polar
histogram. In this paper, α is set to 1, meaning that the
magnitude of vector is calculated for every degree. The
constants a, b are defined in Eq. 8.

Furthermore, for a collision-free grasp of the target object,
it is crucial that all of the k fingers simultaneously avoid
colliding with other obstacles. The angles between k fingers
are uniform, with θk = 360/k, by our assumption. To
consider all k directions at the same time, we aggregate k
histograms with θk intervals. Therefore, the polar histogram
of oi for target oj , considering k fingers, is as follows.

Gj
i (z) =

k−1∑
m=0

Hj
i (z +m× θk), for z ∈ [0, θk] (2)

We can identify which obstacles are blocking a specific
angular sector z from the aggregated histogram of local
obstacles O′′. Therefore, when the target object is oj , the
local obstacle set for an angular sector z can be defined as
follows. IO′′ indicates the index of local obstacles for target.

Sz
j = {oi|Gj

i (z) > 0,∀i ∈ IO′′} (3)

We define a set of all possible local obstacle sets, Sj ,
which comprises Sz

j for all angular sectors. Sj does not
contain duplicates sets Sz

j with different z.

Sj = {Sz
j |z ∈ [0, θk]} (4)



(a) An example where a relocation plan exists; In the search tree
started from the target P3, it reaches the graspable object P1.

(b) An example where a relocation plan does not exist; In the
search tree started from the target P1, all nodes are removed due
to duplication in the path, leaving no more nodes to explore.

Fig. 4: Environment, Knowledge Base, Search Tree (from
left to right) for both (a) and (b). During the expansion of
the search tree, if duplicate objects exist in the path, the
corresponding node, indicated by an x mark, is removed.

From Sj , we define the condition for the target to be
grasped in propositional logic. To grasp the target oj with the
rotational angle of the gripper z, all objects in Sz

j should be
relocated. We represent it as the conjunction of all objects o
in Sz

j must be True. Additionally, the target oj is graspable, if
only one of the obstacle set Sz

j in Sj is relocated, which can
be expressed as the disjunction of Sz

j should be True. Thus,
to be relocated obstacles for grasping oj are represented as
a Disjunctive Normal Form (DNF)1 as follows.

pj =

{∨
Sz
j∈Sj

∧
o∈Sz

j
o, if ∅ /∈ Sj

True, otherwise
(5)

For the target object oj , a sentence can be written as an
implication2 form whose premise pj is a DNF and whose
conclusion is a single positive literal oj . Therefore, we can
generate a Knowledge Base by identifying local obstacles set
and representing them as an implication sentence for each
object in O as follows.

KB = {pj ⇒ oj |j = 1, ...,N} (6)

B. Local obstacles-based backward search

We propose a search algorithm for determining whether
the target can be singulated and, if so, finding the global
optimal relocation plan for target singulation. We employ
Backward Chaining, starting from the target, and repeating
the chain of reasoning to determine whether the target is

1Disjunctive Normal Form (DNF) refers to the disjunction(OR) of con-
junctive(AND) clauses.

2Implication refers to a sentence in the form of X ⇒ Y , which means
that if X is True, then Y is also True. X is called premise, and Y is called
conclusion.

Algorithm 1: Local Obstacles-based Backward
Search (LOBS)

Input: Knowledge Base KB, target t
Output: relocation sequence Os

1 Root.Oc ← t // objects to be relocated
2 Root.OR

s ← t // reversed relocation sequence
3 Root.g ← 0
4 OPEN ← {Root}
5 while OPEN ̸= ∅ do
6 N ← argminN′∈OPEN N ′.cost
7 OPEN ← OPEN \ {N}
8 D ← ∅ // list of local obstacle set
9 for o in N.Oc do

10 p←getPremise(KB, o) // get premise of o from KB
11 if p is not True then
12 D ← D ∪ p

13 if |D| == 0 then
14 return reverse(N.OR

s )

15 dnf ← conjugateDNFs(D) // convert D into a single DNF by
conjugation

16 for clause in dnf do
17 N ′ ← new node
18 N ′.Oc ← clause
19 N ′.OR

s ← findDup(N.OR
s , clause) // find duplicate object in

the path from Root to N ′

20 if len(N ′.OR
s ) ̸= 0 then

21 N ′.g ← len(N ′.OR
s )

22 OPEN ← OPEN ∪N ′

23 return ∅

True. Furthermore, we employ the Uniform Cost Search al-
gorithm to select the node that requires minimum relocation,
thereby obtaining the global optimal relocation plan.

Backward Chaining [11] generally assumes that KB con-
sists of Horn Clauses3, which is an implication with premise
as a clause and conclusion as a single literal. Therefore,
And-Or graph is constructed with a single object literals as
nodes for determining whether the query is True. However,
we assume KB consists of implications with a premise as a
disjunction of one or more AND clauses, referred to as DNF.
Thus, we define each node with AND clause and apply OR-
graph search. During the chaining process, the premises of
the node are conjugated and generate child nodes that have
OR relations with each other. Since all premises are in DNF,
it is possible to convert into a single DNF conjugation from
the multiple DNFs and construct a search tree by defining
each clause in a DNF as a child node. Node with AND clause
also conveys the meaning of local obstacle set colliding with
k fingers at some angular sector z.

Alg. 1 describes our method. It starts from the root node
with target object t, and enqueue to OPEN set (lines 1-4).
OPEN is a data structure that keeps track of candidate nodes
for expanding the search tree. Since we use the Uniform
Cost Search (UCS) method, we select a node that has the
minimum value of cost and dequeue from OPEN (lines 6-
7). D is a list for local obstacle set of N.Oc. For each object
o of Node N , we find a sentence with the o as the conclusion
from KB append its premises to D (line 9). Since the premise

3Horn clause is a disjunction of literals in which at most one is positive,
forming an implication where the premise is the clause and the conclusion
is a single literal.



of each object o is in DNF, D is a list of DNFs (lines 10-
12). If all objects in N.Oc are graspable, then there are no
objects to be relocated, and the size of D is 0. Therefore,
empty set D indicates that N is a goal node. If it reaches to
goal, the relocation sequence is returned (lines 13-14).

If the goal is not reached, then child nodes are generated
from D. Since the objects of N.Oc are in a conjugation
relationship with each other, each DNF in D also has a
conjugation relationship with each other. The conjunction
of multiple DNFs can be converted into a single DNF by
applying the distribution law. Then, each AND clause in
a single DNF generates a child node. To avoid generating
unnecessary duplicates, logically equivalent clauses in a DNF
are removed in this process (line 15).

Each conjunctive clause of the DNF becomes N ′.Oc,
which is the objects for the child node N ′ (lines 17-18).
The relocation sequence for child node N ′.OR

s is defined by
adding N ′.Oc to the relocation sequence of the parent node
N.OR

s . The function findDup checks if a duplication object
exists in the relocation sequence of the child node and returns
N ′.OR

s . N ′.OR
s depends on whether the duplicate object

is graspable. If duplicate object od is not graspable, then
the relocation sequence does not exist; therefore, findDup
returns an empty set. However, if od is graspable, then
findDup returns by removing od from N.OR

s and adding to
the N ′.Oc (line 19). If there is no duplicate object, then N ′

is added to the OPEN list. The cost value of N ′ is defined
by the length of its OR

s (lines 20-22). If there are no more
nodes to explore in the OPEN list before reaching the goal, it
concludes that the relocation plan does not exist and returns
the empty set (line 23).

C. Reposition Algorithm

We propose a method for determining the relocation po-
sitions for obstacles along the relocation sequence obtained
through Backward Chaining. The relocation positions should
ensure that the grasped object does not overlap with other
objects, and consideration should be given to the clearance
radius rg when opening the gripper during grasping and
placing. Additionally, the relocation should be performed
in a way that does not affect subsequent sequences. To
achieve this, we propose the following steps for selecting
the relocation positions.

First, excluding the currently grasped obstacle in Fig. 5b,
we create a binary image by expanding the clearance radius
rg that the gripper can be placed and opened around all
objects (Fig. 5c). Second, we convolve the binary image
from Fig. 5c with a mask image of the size of the object
to be relocated (Fig. 5d). Third, using a threshold value
that considers the k-finger gripper and rg , we mark the
relocation position area on the convolution image (Fig. 5e).
The threshold is as follows:

threshold =

255
(
1− 2θg

360 +
sin(θg)

π

)
, if θg < θk

255
(
1− 2θk

360 + sin(θk)
π

)
, otherwise

(7)

(a) (b) (c)

(d) (e) (f)

Fig. 5: (a) Current environment. (b) Current image. Red is
the current target object. Blue is the remaining obstacle in the
sequence. Green is the current obstacle in the sequence. (c)
Binary image extended by rg in the current image. (d) Mask
image and result of the convolution with the binary image.
(e) The image emphasizing areas that exceed the threshold.
(f) The final selected image. The red dashed circle is the
original obstacle position. The blue dashed circle is the area
expanded by rg around the obstacles is the sequence. The
green dashed circle is the selected relocation position.

Where 255 is the value obtained when the mask image region
completely overlaps in convolution. The values in parenthe-
ses following it represent the ratio of the area excluding the
portion covered by the circle for the given angle in the entire
area of the circle. Furthermore, θg represents the angle from
the center of the circle when it overlaps by rg , and θk is the
angle between the gripper fingers.

Finally, among the marked areas, we select a position that
is farthest from the target object, ensuring that it does not
interfere with subsequent relocations (Fig. 5f).

V. EXPERIMENT

In this section, we show the experimental results of our
algorithms. First, we demonstrate the performance of our
search algorithm (Section III.B) for obtaining the global
optimal relocation sequence. Second, we show the success
rate of the repositioning algorithm (Section III.C) given the
relocation sequence. Finally, we execute the entire process
(Section III) of generating the relocation plan and validate it
in a simulation environment.

A. Experiment Setup

We evaluated our algorithm in a simulated environment us-
ing the robotic simulator CoppeliaSim [12] where dynamics
are modeled by various physics engines. A 6 DOF manip-
ulator Doosan Robot M1013 with a custom three-fingered
gripper is used for simulation. The gripper configuration is
as follows: k = 3, θk = 120deg, wf = 0.02m, rg = 0.05m.



TABLE I: The performance of our search algorithm LOBS for Case I (N=16, 18, 20) and Case II (N=25, 37, 50). N
represents the number of objects, and the value in parentheses next to N indicates the occupancy rate, which is the area
occupied by objects relative to the table area. The baseline method is shortened as Base.

Measure N=16 (34%) N=18 (38%) N=20 (42%) N=25 (≈45%) N=37 (≈45%) N=50 (≈45%)
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

deadlock rate (%) 0 20 0 25 0 55 0 35 0 55 0 35
success rate (%) 95 100 80 100 70 100 55 100 35 100 0 100
search time (sec) 3.58 0.14 12.88 0.17 19.08 0.21 6.13 0.26 25.96 0.53 60.00 0.93
# relocation 2.00 2.00 2.00 2.07 2.07 2.44 2.09 2.23 2.00 2.33 0.00 2.54

Fig. 6: An example sequence of executing a relocation plan in a simulation environment. In the first figure described as
Initial State, a star represents the target, and triangles represent objects to be relocated. Relocating objects in the order of
the red triangle and then the green triangle creates enough space to grasp the target, as shown in the final figure.

We assume a scenario where multiple objects are densely
placed on the table. We set the size of all objects i to the
same radius ri = 0.075m and a rectangular table of different
sizes. We evaluated by increasing the number of objects. All
experiments were on a 2.9 GHz Intel Core i7-10700 desktop
with 64 GB RAM with one minute runtime limit.

The baseline method for our search algorithm LOBS is
based on A* search [13]. Different heuristics have been
proposed to find a global optimal rearrangement plan in [14],
[7]. Unlike LOBS, the baseline is a forward search approach
that starts from a graspable object and defines each node with
a single object. Starting from the root node, it considers the
selected object has been relocated and generates the next
graspable object as a child node, expanding the search tree
until the target is reached. We define heuristic as Gt

min =
minz∈[0,θk] G

t(z), which is the minimum number of local
obstacle for grasping the target t. Gt(z) is defined in Eq. 11.
The baseline method does not use KB but instead assumes
that the selected object has been relocated and updates the
graspable objects as the search tree expands.

B. Experiment Result

We conducted experiments on two cases to demonstrate
the performance of the proposed search algorithm compared
with the baseline method. In Case I, we increased the number
of objects on a fixed-sized table. In Case II, we increased
the number of objects while also increasing the table size in
proportion to maintain the occupancy rate, which is the ratio
of the area occupied by objects.

Table I presents the averaged results across 20 episodes
for each column. For each episode, all objects are randomly
placed, and the target was selected as the object with the
largest Gj

min. We consider an episode a success if a relo-
cation sequence is found or a deadlock is identified within

a 1-minute time limit. Therefore, success rate refers to the
proportion of successful episodes to the total number of
episodes. Likewise, deadlock rate refers to the proportion
of episodes where deadlock is identified to the total number
of episodes. # relocation refers to the average length of the
relocation sequence across non-deadlock episodes. search
time represents the average search time across all episodes.

The experiment result for Case I is shown in Table I. As
the number of objects N increases, the our method(Ours)
identifies more episodes as deadlocks. On the other hand, the
baseline method(Base) is likely to fail to identify deadlock
within the time limit. Therefore, as N increases, the search
time of Base significantly increases, leading to a decrease in
the success rate. In contrast, Ours maintains a 100% success
rate and keeps the search time below 1 second, regardless
of the deadlock rate. Since both are optimal planners, the
number of relocations remains the same when N is relatively
small. However, as N increases, Base fails to find a relocation
plan in 1 minute, even if it exists. Thus, when N=20, the
average number of relocations is smaller in Base than Ours.

In Case II, we increased N while maintaining the occu-
pancy rate of almost 45%. Base shows a significant decrease
in success rate as N increases. This is due to the increase
in search time, similar to Case I. On the other hand, Ours
shows no meaningful increase in both the success rate and
search time, even with the increase in N and # relocation.

Table II shows the performance of our reposition algo-
rithm. It achieved a 100% success rate and a runtime of about
3 seconds in all episodes. Table III shows the performance of
our methods, including searching for the relocation sequence
and determining the relocation position, which is the total
process of generating a relocation plan and executing it
in simulation. A relocation plan consists of a sequence of
objects to be relocated and the positions to relocate them



TABLE II: The success rate and runtime of the proposed
repositioning algorithm. Only 10 non-deadlock episodes of
Case I are considered for evaluation.

N=16 N=18 N=20
success rate (%) 100 100 100
reposition time (sec) 2.67 2.93 2.76

TABLE III: The total success rate and individual runtime for
relocation planning and execution in a simulation environ-
ment. Relocation planning includes the process of searching
for relocation sequence and repositioning. Only 10 non-
deadlock episodes of Case I are considered for evaluation.

N=16 N=18 N=20
total success rate (%) 100 100 100
planning time (sec) 2.82 3.09 2.96
execution time (sec) 77.99 77.60 76.49

to. For each object to be relocated, pick-and-plan actions
are generated for the simulated robot with a motion planner
RRTConnect [15]. We consider an execution is success if all
actions are executed without any collisions with objects on
the table until the target is picked up. Our method achieved
a 100% success rate including execution and a planning time
of about 3 seconds in all episodes.

VI. CONCLUSIONS
We proposed an algorithm that generates a relocation

sequence through backward search based on a local obstacle
set. Our algorithm was able to maintain a 100% success rate
and determine whether the deadlock occurred or generate a
global relocation plan within 3 seconds, regardless of the
number of objects N. However, as N increases, the deadlock
rate also increases significantly. Therefore, it is necessary
not only to determine whether it is a deadlock but also
to generate a plan for breaking the deadlock by utilizing
non-prehensile actions. Furthermore, we assume that there
is always enough space to reposition the object within the
table area. However, even if there is free space to relocate, a
collision between the gripper and obstacles may occur while
placing the object in the new position.

APPENDIX
In a grid map with a square size of ws, two constants

a, b ∈ R+ are defined by the following relationship.

a− b

(
ws − 1

2

)2

= 1 (8)

In Fig. 2a, the finger width of gripper is wf and the radius
of the target is rt. Then, the area occupied by each finger γt
is defined as follows.

γt = 2tan−1(
wf

2rt
) (9)

As shown in Fig. 2b, the area occupied by an obstacle
oi, which is at a distance di from t and exists within the rg
boundary, can be defined as follows.

γi = 2cos−1
(
(rt + rg)

2 + d2i − r2i
2di(rt + rg)

)
(10)

For all object i, Gj(z) is defined as the sum of the
histogram for each object i as follows.

Gj(z) =
∑
i

Gj
i (z) (11)

ACKNOWLEDGMENT

This work was supported by the Technology Innovation
Program and Industrial Strategic Technology Development
Program (20018256, Development of service robot technolo-
gies for cleaning a table).

REFERENCES

[1] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[2] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning
for object placement on cluttered table surfaces,” in 2011 IEEE/RSJ
international conference on intelligent robots and systems. IEEE,
2011, pp. 4627–4632.

[3] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object re-
arrangement,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 211–218.

[4] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-
supervised deep reinforcement learning,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 4238–4245.

[5] K. Xu, H. Yu, Q. Lai, Y. Wang, and R. Xiong, “Efficient learning
of goal-oriented push-grasping synergy in clutter,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6337–6344, 2021.

[6] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle rear-
rangement for object manipulation tasks in cluttered environments,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 183–189.

[7] J. Lee, C. Nam, J. Park, and C. Kim, “Tree search-based task and
motion planning with prehensile and non-prehensile manipulation
for obstacle rearrangement in clutter,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
8516–8522.

[8] C. Nam, J. Lee, S. H. Cheong, B. Y. Cho, and C. Kim, “Fast and
resilient manipulation planning for target retrieval in clutter,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 3777–3783.

[9] D. Saxena and M. Likhachev, “Planning for manipulation among
movable objects: Deciding which objects go where, in what order, and
how,” in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 33, no. 1, 2023, pp. 668–676.

[10] D. M. Saxena and M. Likhachev, “Planning for complex non-
prehensile manipulation among movable objects by interleaving multi-
agent pathfinding and physics-based simulation,” in 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 8141–8147.

[11] C. Hewitt, “Planner: A language for proving theorems in robots,”
in Proc. of International Joint Conference on Artificial Intelligence,
vol. 1, 1971, pp. 295–301.

[12] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ international
conference on intelligent robots and systems. IEEE, 2013, pp. 1321–
1326.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[14] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-
prehensile manipulation under clutter and uncertainty,” Autonomous
Robots, vol. 33, pp. 217–236, 2012.

[15] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.


