77th Annual Meeting of the Division of Fluid Dynamics Sunday-Tuesday, November 24-26, 2024; Salt Lake City, Utah

Session R17: Electrokinetic Transport II 1:50 PM-4:00 PM, Monday, November 25, 2024

Room: 250 A

Chair: Jerry Shan, Rutgers University

Abstract: R17.00004 : Influence of grafting properties on electrokinetic flow of polyelectrolyte solutions in brush-grafted microchannels*

2:29 PM-2:42 PM

← Abstract →

Presenter:

Myung-Suk Chun (Korea Institute of Science and Technology)

Authors:

Seonghak Kim (Korea Institute of Science and Technology)

Myung-Suk Chun (Korea Institute of Science and Technology)

Collaborations:

Complex Fluids Laboratory, Advanced Materials Research Division

Brush-grafted channels have the advantage of a tunable and wide range of response to external stimuli, allowing us to use them in various applications. We modeled the electrokinetic flows of Newtonian as well as polyelectrolyte (PE) solutions in PE brush-grafted microchannels, on the basis of the continuum approach. In our model framework, the Poisson-Nernst-Planck equations are explicitly solved for the electrostatic field incorporated with the Alexander-de Gennes model for PE brush-layer and each ion concentration estimated by multi-species ion balance. Accounting for the Brinkman hydrodynamic friction inside the brush-layer, Bird-Carreau constitutive model is applied in the Cauchy momentum equation to describe the PE solution of anionic polyacrylic acid (PAA). This presentation reports in-detail the new results regarding the effects of grafting properties in terms of grafting density and Kuhn segment length. The electrostatic potential increases with increasing grafting density, whereas the surface potential decreases with increasing Kuhn length clearly unlike in the bulk. It is emphasized that the flow velocity decreases with either higher grafting density owing to enhanced PAA chain friction or larger Kuhn length according to higher flow retardation due to chain stiffness. The corresponding viscosity profile inside the channel is also examined with variations of pH and concentration of PAA dispersion.

*Supported by the KIST Institutional Program (project no. 2E33162)

77th Annual Meeting of the Division of Fluid Dynamics Sunday–Tuesday, November 24–26, 2024; Salt Lake City, Utah

Session Index

Session R17: Electrokinetic Transport II

Chair: Jerry Shan, Rutgers University Room: 250 A

Monday, November 25, 2024 1:50PM - 2:03PM	<u>R17.00001: Conducting Polymer Jets in Electrostatically-Assisted Direct Ink Writing (eDIW)</u> Vitor Bandini, YONG IL KIM, Xinnian Wang, yayue pan, Alexander L. Yarin
Monday, November 25, 2024 2:03PM - 2:16PM	<u>R17.00002: Giant osmotic power generation in subnanometer-diameter single-wall carbon nanotubes</u> Da-Chi N/A Yang, Richard J Castellano, Ricardo P Silva, Robert F Praino, Jerry W Shan
Monday, November 25, 2024 2:16PM - 2:29PM	<u>R17.00003: Net electroosmotic flow along an uncharged polarizable surface under DC electric field.</u> Doyel Pandey, Somnath Bhattacharyya, Steffen Hardt
Monday, November 25, 2024 2:29PM - 2:42PM	R17.00004: Influence of grafting,properties on electrokinetic flow of polyelectrolyte solutions in brush-grafted microchannels Seonghak Kim, Myung-Suk Chun
Monday, November 25, 2024 2:42PM - 2:55PM	R17.00005: Abstract Withdrawn
Monday, November 25, 2024 2:55PM - 3:08PM	R17.00006: Charging dynamics of electrical double layers in a pore with an axially varying radius: Impact of pore shape and roughness Bryce Rives, Filipe Henrique de Sousa Evangelista, Ankur Gupta
Monday, November 25, 2024 3:08PM - 3:21PM	R17.00007: Investigation of Electrical Double Layers of Ionic Liquids in Graphene-Capped Liquid Cells by Multimodal Synchrotron Infrared Nanospectroscopy for Advanced Energy Storage Devices Zixuan Li, Ka Chon Ng, Maximilian Jaugstetter, Miquel Batalle Salmeron, Hans Bechtel, Stephanie Gilbert Corder
Monday, November 25, 2024 3:21PM - 3:34PM	R17.00008: Massively non-linear increase in electroosmotic transport in nanochannels grafted with cationic polyelectrolyte brushes Siddhartha Das, Raashiq Ishraaq
Monday, November 25, 2024 3:34PM - 3:47PM	R17.00009: Theoretical investigation of ion transport dynamics in current-time inside nanochannel and microchannel RAGULRANJITH S, Vishal V.R. Nandigana
Monday, November 25, 2024 3:47PM - 4:00PM	<u>R17.00010: Reduced-Order Model of Multicomponent Electrolyte Transport in Bipolar Membranes</u> Peter N Romero, Wilson Smith, Ankur Gupta

•	Permis Acknowledger Has the work you senting been subm or published in a p review jou Professional	ment Yes a are itted peer- rnal? No Title	fessor		
Orde	· Name	Role	Email	Affiliation	Action
001	Seonghak Kim	Co- Author	seonghak35@gmail.com	Korea Institute of Science and Technology	
002	<mark>Myung-Suk Chun</mark> , PhD	Speaker	mschun@kist.re.kr	Korea Institute of Science and Technology	Submitter
			Please Proof your Subr	nission	
			Print this page for your re	cords	
If you are planning to attend the DFD 2024 meeting in person and would like to volunteer to serve as a session chair, please check this box:			Yes, I would like to serv	e as a session chair	
If the speaker is outside the US, an invitation letter will automatically be sent to them upon registering for the meeting (registration opens July 10). Is the speaker requesting an early invitation letter for VISA					
		purposes?	No		
Presentation Type: Oral					
Select your Sorting Category: 24. Microscale and Nanoscale Flows					
Select your Sub-Category 24.5 Microscale and Nanoscale Flows: Non-Newtonian					
Abstract Title: not reaction of grafting properties on electrokinetic flow of polyelectrolyte solutions in brush-grafted microchannels					
Abstract Title: polyelectrolyte solutions in brush-grafted microchannels Abstract Body: Brush-grafted channels have the advantage of a tunable and wide range of response to external stimuli, allowing us to use them in various applications. We modeled the electrokinetic flows of Newtonian as well as polyelectrolyte (PE) solutions in PE brush-					

various applications. We modeled the electrokinetic flows of Newtonian as well as polyelectrolyte (PE) solutions in PE brushgrafted microchannels, on the basis of the continuum approach. In our model framework, the Poisson-Nernst-Planck equations are explicitly solved for the electrostatic field incorporated with the Alexander-de Gennes model for PE brush-layer and each ion concentration estimated by multi-species ion balance. Accounting

	for the Brinkman hydrodynamic friction inside the brush-layer, Bird- Carreau constitutive model is applied in the Cauchy momentum equation to describe the PE solution of anionic polyacrylic acid (PAA). This presentation reports in-detail the new results regarding the effects of grafting properties in terms of grafting density and Kuhn segment length. The electrostatic potential increases with increasing grafting density, whereas the surface potential decreases with increasing Kuhn length clearly unlike in the bulk. It is emphasized that the flow velocity decreases with either higher grafting density owing to enhanced PAA chain friction or larger Kuhn length according to higher flow retardation due to chain stiffness. The corresponding viscosity profile inside the channel is also examined with variations of pH and concentration of PAA dispersion.	
Team Acknowledgement:	Complex Fluids Laboratory; Advanced Materials Research Division	
Funding Acknowledgement:	Supported by the KIST Institutional Program (project no. 2E33162)	
Special Instructions:	None.	
Category Type: Computational		
Publications Reference:	 JM. Lim, MS. Chun, "Curvature-induced secondary microflow motion in steady electro-osmotic transport with hydrodynamic slippage effect", Physics of Fluids 23, 102004 (2011). B. Chun, MS. Chun, "Electrostatic potential analysis in polyelectrolyte brush-grafted microchannels filled with polyelectrolyte dispersion", Micromachines 12, 1475 (2021). S. Kim, MS. Chun, "Flow behavior of non-Newtonian polyelectrolyte solutions in brush-grafted soft microchannels", to be submitted (August 2024). 	
Newsworthy Research?	Yes, I would like to consider highlighting my abstract in outreach to	
Media Summary:	Microscale and nanoscale channels grafted with polyelectrolytes have shown great promise for applications, such as lab-on-chips based sensing, actuators, and current rectification. Here, the polyelectrolyte means a charged and water-soluble polymer, which can be a typical soft matter. Our findings on PAA brush-grafted soft microchannels are expected to provide useful information and design platform aiming to develop efficient energy conversion according to enhanced electrokinetic streaming potential and current.	
Keyword Label 1	Microfluidics	
Keyword Label 2	Brush-Grafted Channel	
Keyword Label 3	non-Newtonian Solution Edit Return	