

MANFRED DONIKE WORKSHOP 41st COLOGNE WORKSHOP ON DOPE ANALYSIS

26.2. – 3.3. 2023

PAPER PRESENTATION POSTER PRESENTATION

Kwon OS^{1,2}, Rahaman KA^{1,2}, Muresan AR^{1,2}, Xu Y¹, Jeon MJ¹, Kim MY¹, Jung S¹, Chin AL¹, Min H¹, Kim HJ¹, Sung C¹, Kim KH¹, Lee KM¹, Kang MJ^{2,3}, Lee J¹, Son J¹

The urinary metabolite Ac-T β_{1-14} in huvec cells and rats treated with thymosin β_4 : A potential biomarker for doping tests

Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea¹ Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea²

Center for Advanced Molecular Recognition, KIST, Seoul, South Korea³

Abstract

Thymosin β 4 (**T** β **4**) was reported to exert various beneficial bioactivites such as tissue repair and regeneration, anti-inflmmation, and reduced scar formation, and it is listed on the prohibited substnaces by the World Anti-Doping Agency. No metabolism studies of **T** β **4** were not reported yet. Previously, our lab reported that total 13 metabolites were found by using multiple enzymes, and 6 metabolites (Ac-T β ₃₁₋₄₃, Ac-T β ₁₋₁₁, Ac-T β ₁₇₋₄₃, Ac-T β ₁₋₁₄, Ac-T β ₁₋₁₅, and β ₁₋₁₇) were confirmed by comparing with the synthetic standards.

The study was aimed at identifying new metabolites of **T** β **4** in biological systems such as leucine aminopeptidase, human kidney microsomes, huvec cells and rats to develope biomarkers for detecting doping in sports.

A method for detecting and quantifying Ac-T β_{1-14} was developed and validated using Q-Exactive orbitrap mass spectrometry. LOD and LOQ of the Ac-T β_{1-14} were 0.19 and 0.58 ng/ml and showed a good linearity (r^2 =0.9998). This work was conducted in in vitro pure enzyme and microsome systems, cultured huvec cells, and rats after administration of parent protein. Among 6 metabolites above, Ac-T β_{1-14} was found in huvec cells exposed to 10 µg/ml and in urine of rats intraperitoneally treated with 20 mg/kg **Tβ4.**

As a result, Ac-T β_{1-14} , the metabolite of **T\beta4**, was detected in all in vitro biological systems including pure enzyme and microsome systems, huvec cells, and rat urine samples. In addition, the metabolite Ac-T β_{1-14} was quantitatively determined to 48 hr in rats, with the highest concentration occurred between 0-6 hr. Ac-T β_{1-14} was not detected in non-treated control groups including human blank urine. This results suggest that Ac-T β_{1-14} in urine is a potential biomarker for screening the parent T β 4 in doping tests.