Introduction

Results and Discussion

References

Recently, semiconducting two-dimensional (2D) transition metal dichalcogenide (TMD) material-based field-effect transistors (FETs) were studied actively to overcome the short channel effects (SCEs), which are fundamental issues in scaling of logic transistors for the continuation of Moore's law [1,2]. In this work, complementary $MoS₂$ and $WSe₂$ FETs were fabricated by selective patterning with alignment technique. WSe $_2$ and MoS $_2$ channels were placed on highly doped-Si/SiO $_2$ substrate using mechanical exfoliation and dry transfer method to utilize p- and n-type channel, respectively. Then, we successfully obtained ambipolar transfer curves from the complementary MoS₂ and WSe₂ FETs. In addition, I_d-V_d and I_d-V_g characteristics of each polarity transistor were analyzed to verify the ambipolar operation and several advantages of the complementary FETs. This work can provide useful information of structure design to investigate **proper electrical operation of 2D material-based ambipolar transistors.**

*Jimin Park, Jangyup Son, Sang Kyu Park, Dae-Young Jeon **

Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Joellabuk-do 55324, South Korea

> •**[1] Hoefflinger, B. IRDS: International Roadmap for Devices and Systems, Rebooting Computing, s3s. Nano-Chips 2030; Springer, 2020; pp 9– 17.**

> •**[2] Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699– 712.**

> •**[3] W.-M. Kang, et al, "High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping", Semicond. Sci. Technol. 31 (2016).**

Conclusions

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) (grant no. NRF-2017M3A7B4049167 and grant no. MSIT-CPS21081-100) and the Korea Institute of Science and Technology (KIST), Open Research Program.

Figure 2. Atomic force microscope (AFM) step heights of each channel layers. thickness of (a) WSe_2 and (b) MoS_2 layers were 26 nm and 12 nm, respectively.

Figure 1. Illustrations and corresponding optical microscope images showing the fabrication procedure of CFET in this work, (a) $MoS₂$ dry exfoliation and (b) WSe₂ dry transfer using the PDMS on the P++ $Si/SiO₂$ substrate. (c) First photolithography, (d) thermal evaporation and lift-off for 10/70 nm Ni/Au electrode patterning. (e) secondary photolithography, (f) thermal evaporation and lift off for 70 nm Au electrode patterning.

20 $\begin{array}{ccc} \text{20} \end{array}$

In conclusion, both $MoS₂$ and $WSe₂$ -based ambipolar transistor was fabricated by mechanical exfoliation, dry transfer method, selective patterning process on single substrate. Ni and Au electrodes were contacted to multi-layers MoS_{2} and WSe_{2} for n- and p-type FETs, respectively. The fabricated device has shown reasonable ambipolar characteristics with ohmic-like contacts. Transfer curves and output characteristics were also analyzed in detail.

Figure 3. Transfer characteristics $(I_d \text{ vs } V_g)$ of (a) p- and (b) n-type FETs. Gate bias range was -60 to 10 V, and V_d was 1 V. Inset show the optical microscope image of each transistors.

(d) Ni/Au deposition & lift-off

(b) WSe² dry transfer using PDMS

The complementary metal oxide semiconductor (CMOS) industry is facing the SCEs issue caused by the down-scaling of logic devices. Therefore, CMOS using 2D TMD materials is studied. The polarity controlling of conventional siliconbased CMOS transistors is achieved by a heavy dose of impurity ion doping. However, 2D TMD-based complementary FET (CFET) can be fabricated by the difference between the work function of the contact electrode and the band gap of the semiconducting material [3].

(f) Au deposition & lift-off

Figure 4. (a) Ambipolar characteristics of CFET. Under the -23 V gate bias (V_g) , it depends on (b) p-type operation, over the -23 V gate bias (V_g) , it depends on (c) n-type operation. Inset show the schematics of connected circuit.

Ambipolar characteristics based on complementary MoS² and WSe² field-effect transistor

30

(c) 1st Photolithography by selective patterning

(e) 2nd Photolithography by selective patterning

Figure 5. Output characteristics $(I_d$ vs V_d) of (a) p- and (b) n-type FETs as gate bias (V_g) ranges from -60 to -40 V and from -20 to -20 V, respectively.

(a) (b)

