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A B S T R A C T   

The synergetic impacts of ferric chloride aided peracetic acid (FPA) pretreatment were investigated to enhance 
the total biomass utilization through effective cellulose conversion and high-quality lignin production. The 
sugarcane bagasse pretreatment with 2% peracetic acid (PAA) and 0.1 mol/L ferric chloride (FeCl3) effectively 
removed 57.3% of lignin and 72.2% of xylan while preserving ~ 97% of cellulose from sugarcane bagasse under 
mild temperature (90 ◦C). The FPA pretreated sugarcane bagasse was effectively hydrolyzed with a glucose yield 
of 313.0 mg/g-biomass, which was 4.5 times higher than the yield of untreated biomass (69.75 mg/g-biomass) 
and 1.6 and 3.6 times higher than that of individual PAA and FeCl3 pretreated sugarcane bagasse, respectively. 
The regenerated lignin (FPA lignin) showed great potential for further valorization by preserving the major 
interunit linkage (up to 86% of β-O-4) without significant carbohydrate contamination and lignin condensation 
due to its mild reaction conditions. In this study, the combination of PAA and FeCl3 synergistically enhanced the 
pretreatment efficiency on sugarcane bagasse and resulted in high fermentable sugar and high-quality lignin 
production.   

1. Introduction 

Due to the rapid depletion of fossil resources and associated envi-
ronmental concerns, the demand for alternative and renewable sources 
has been increased [1]. Because of its abundance, sustainability, and 
renewability, lignocellulosic biomass has been highlighted as a potential 
feedstock for biofuels, functional materials, and green chemicals [2]. 
Carbohydrate polymers, especially cellulose in the plant, can be con-
verted into biofuels via diverse biological pathways [3,4], while non- 
carbohydrate components like lignin are challenging to convert bio-
logically and even limit the enzyme access to cellulose [5]. In particular, 

lignin, an aromatic macromolecule mainly comprised of sinapyl, con-
iferyl, and p-coumaryl alcohols, is a major recalcitrance factor in the 
biological conversion of biomass due to its physical hindrance of the 
enzyme access to cellulose, enzyme deactivation through non- 
productive binding to enzymes, and its toxicity to microorganisms 
[6,7]. Therefore, it is essential to explore an effective pretreatment of 
lignocellulosic biomass to reduce this recalcitrance factor for enhancing 
cellulose conversion. 

Sugarcane bagasse is the residue after the extraction of sugarcane 
juice in the sugar industry. According to the United Nations Food and 
Agriculture Organization, China is the third biggest producer of 
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sugarcane after Brazil and India (FAO, http://www.fao.org/faostat). 
Taking the example of Guangxi province in southern China, it accounts 
for ~ 65% of sugarcane output in China [8]. At present, sugarcane 
bagasse is widely utilized for animal feed, papermaking, and burning to 
supply heat or energy. Sugarcane bagasse is also a viable feedstock for 
biofuel production because of its high carbohydrate content and yearly 
output capacity. Sugarcane bagasse is mainly composed of glucan 
(35–45%), xylan (20–30%), and lignin (15–25%) [9,10]. Therefore, in 
terms of the economic and environmental aspects, sugarcane bagasse is 
a desirable feedstock in biofuels and biochemical production. 

Pretreatment is an essential step for biofuel production from ligno-
cellulosic biomass due to its natural resistance factors [11]. For effective 
conversion of lignocellulose, many pretreatment strategies have been 
exploited over the last several decades of research, such as dilute acid 
[12,13], alkali [14,15], ionic liquid [16,17], deep eutectic solvent 
[18,19], acid hydrotrope [20], and organosolv [21,22] pretreatments. 
PAA has been used in the pulping and bleaching industries. Peracetic 
acid (PAA) has a relatively weaker O − O bond dissociation energy (159 
kJ⋅mol− 1) than hydrogen peroxide (213 kJ⋅mol− 1) [23,24] and can 
intensively generate radicals. According to the previous studies, homo-
lytic cleavage of the O-O bond in CH3C(=O)O− OH can generate ace-
tyloxyl and hydroxyl radicals as below (1) [23,25]. 

CH3C( = O)O2H→CH3C( = O)O⋅+⋅OH (1) 

Strong nucleophile radicals can promote lignin decomposition and 
dissolution by reacting with the nucleophilic sites, including the aro-
matic ring and the aliphatic side chain of lignin [26]. PAA pretreatment 
showed effective delignification on biomass in previous studies [27]. 
However, a long reaction time (e.g., 26.5 h) or relatively high temper-
ature (e.g., 130 ◦C) was needed to remove lignin effectively, and these 
severe conditions with peracetic acid caused the unwanted degradation 
of cellulose. Lewis acids have also been introduced as eco-friendly and 
economical catalysts for acidic biomass pretreatment due to their non-
toxicity and reusability [28]. Lewis acid can form more hydrogen ions 
(H3O+) in an aqueous solution, which results in the destruction of 
biomass structures [29]. The generated H3O+ has relatively weak acid-
ity. Therefore, Lewis acid pretreatment showed better preservation of 
cellulose during the pretreatment compared to mineral acids and made 
it easier to maintain the equipment from corrosion [29,30]. These 
hydrogen ions produced by Lewis acids depolymerize hemicellulose into 
monosaccharides. For instance, Shen et al. [31] effectively removed 
hemicellulose from Eucalyptus camaldulensis by AlCl3 catalyzed hydro-
thermal pretreatment. Wei et al. [32] reported that ZnCl2 hydrate pre-
treatment selectively extracted hemicellulose in eucalyptus as well as 
converted cellulose I to cellulose II. Similarly, Zhang et al. [33] decon-
structed sugarcane bagasse by FeCl3 pretreatment, which resulted in 
nearly 100% hemicellulose removal. However, in general, Lewis acid- 
catalyzed hydrothermal pretreatment has a limited delignification 
impact; therefore, co-solvents have been applied for the further 
enhancement of biomass pretreatment. The combination of FeCl3 and 
ethanol pretreatment effectively improved the glucan conversion in 
sugarcane bagasse by up to 93.8% [34]. Also, Wei et al. [10] reported 
that FeCl3 catalyzed ethylene glycol pretreatment resulted in 92.3% of 
cellulose recovery and 63.3% of delignification from sugarcane bagasse 
at 130 ◦C. In this study, PAA was applied with FeCl3 to further improve 
its pretreatment effects on sugarcane bagasse. 

For accomplishing a successful biorefinery strategy with lignocellu-
losic biomass, effective utilization of lignin is also crucial. In particular, 
the quality of lignin (e.g., high purity, preservation of β-O-4 linkages, 
less condensation) is as important as its fractionation yield in its sub-
sequent processes for the production of fuels and chemicals [35,36,37]. 
Shuai et al. [38] reported a formaldehyde-activated lignin stabilization 
through 1,3-dioxane structures with lignin side-chain OH-groups. Cat-
alytic reductive depolymerization of formaldehyde stabilized lignin 
resulted in a phenolic monomer yield close to theoretical. Similarly, Lan 
et al. [39] applied acetaldehyde and propionaldehyde to reduce the 

unwanted lignin condensation and preserve more β-O-4 linkages that 
result in higher monoaromatic yields from lignin. In this study, FeCl3 
catalyzed PAA (i.e., FPA) pretreatment was developed to fractionate 
high-quality lignin and enhance the biological conversion efficiency of 
cellulose from sugarcane bagasse under mild reaction conditions. The 
impacts of FPA pretreatment on sugarcane bagasse were investigated by 
the selected characterization and evaluation methods including chemi-
cal composition changes, structural properties of cellulose and lignin, 
and enzymatic digestibility of pretreated biomass based on our previous 
studies [7,40]. The degree of polymerization (DP) of cellulose and the 
cellulose content of cellulose-enriched solids were measured to explain 
the enhancement of glucose yield via the pretreatment. Also, structural 
properties of lignin, including molecular weight distribution and the 
contents of aromatic units and interunit linkages, were analyzed using 
gel permeation chromatography (GPC) and two-dimensional (2D) 
1H–13C heteronuclear single quantum coherence (HSQC) nuclear mag-
netic resonance (NMR) for evaluating the quality of lignin for its post- 
applications. 

2. Material and methods 

2.1. Materials 

Sugarcane bagasse (Guangxi, China) was aired-dried, milled to 20- 
mesh-size by a Wiley mill (MF10, IKA, Guangzhou, China), and stored 
in a sealed bag until used for the experiments. The fibers have around 
26.3% xylan, 39.5% glucan, and 25.0% lignin. Peracetic acid solution 
(32 wt%), acetic acid (≥99%), ferric chloride (FeCl3), Cellic CTec2 
enzyme, and deuterated dimethyl sulfoxide (DMSO‑d6) were purchased 
from Sigma. Other chemicals, including tetrahydrofuran (THF), acetyl 
anhydride, pyridine, and sodium acetate, were purchased from VWR 
and Fisher Sci. 

2.2. Ferric chloride aided peracetic acid (FPA) pretreatment of sugarcane 
bagasse 

Sugarcane bagasse pretreatments were conducted using a 300-mL 
Parr reactor (Parr Instrument Company) equipped with a temperature 
sensor and a mechanical stirrer. Air-dried sugarcane bagasse (10 g) was 
mixed with 100 mL of pretreatment solvent (2 wt% PAA and/or 0.1 mol 
/ L ferric chloride). The pretreatment reaction was conducted at 70 – 
130 ◦C with 250 rpm agitation for 30 – 120 min. The applied PAA 
concentration was determined by our preliminary study (data not 
shown), and FeCl3 loading was based on the previous study [33]. Once 
the pretreatment was completed, the Parr reactor was immediately 
removed from the heating mantle and cooled down to room temperature 
in the ice bath. The pretreated biomass was recovered by vacuum 
filtration and further washed with deionized (DI) water until the filter 
was clear and colorless. The pretreated biomass solids were collected for 
chemical composition, cellulose degree of polymerization (DP), and 
enzymatic hydrolysis analysis. The hydrolysate was poured into DI 
water and stored at 5 ◦C for 24 h to precipitate lignin. After the pre-
cipitation, the lignin samples were obtained by centrifugation, washed 
with DI water, and lyophilized at − 55 ◦C. 

2.3. Enzymatic digestibility test 

Enzymatic hydrolysis was conducted with untreated sugarcane 
bagasse and cellulose-enriched solid residues recovered from the pre-
treatments at a 2% solid loading in sodium acetate buffer (50 mM, pH 
4.8) for 72 h. The slurry was agitated at 150 rpm and 50 ◦C. Enzyme 
loadings were 20 FPU (filter paper unit)/g dry substrate for Cellic CTec2 
(Novozymes). The activity of Cellic CTec2 (90 FPU/mL) was measured 
as described in the previous study [41]. In brief, 500 μL enzyme was 
loaded in 1 mL buffer with 50 mg filter paper (1.0 × 6.0 cm) to deter-
mine filter-paper cellulase activity. The amount of the generated 

J. Zhuang et al.                                                                                                                                                                                                                                  

http://www.fao.org/faostat


Fuel 319 (2022) 123739

3

reducing sugar was measured by 3,5-dinitrosalicylic acid (DNS) assay. 
The hydrolysates were periodically collected in vials and heated in the 
block heater at 95 ◦C for 5 min to deactivate the enzymes and stop hy-
drolysis. The hydrolysate samples were then centrifuged at 10,000 rpm 
for 5 min to remove the solids, and the supernatant samples were filtered 
through a 0.22 μm polytetrafluoroethylene (PTFE) filter. At a minimum, 
all analyses were carried out in duplicates. 

2.4. Biomass compositional analysis 

Biomass compositional analysis was performed with untreated and 
pretreated sugarcane bagasse according to the standard procedure [42]. 
Carbohydrate contents in solid residues and hydrolysates generated 
from enzymatic hydrolysis were analyzed using a high performance 
liquid chromatography (HPLC, YL 9100, Young-Lin, Seoul, Korea) with 
a refractive index detector and a Bio-Rad Aminex HPX-87H column at 
60 ◦C. The mobile phase used was 5 mM H2SO4 with a 0.6 mL/min flow 
rate. The carbohydrates (i.e., glucose and xylose) contents were deter-
mined by the calibration curves with external standards (i.e., pure 
glucose and xylose). The calculation formula for xylan/lignin removal 
was displayed as follows: 

Solid recovery(%) =
Pretreated dry biomass(g)

Raw dry biomass(g)
× 100% (2)  

Glucan recovery =
Glucan in pretreated solid(g)

Initial glucan in raw biomass(g)
× 100% (3)     

2.5. Degree of polymerization (DP) of cellulose analysis 

The degree of polymerization of cellulose was measured based on a 
previous report [5]. In brief, holocellulose was isolated from biomass 
samples (0.6 g) by loading in the mixture of 9.375 g peracetic acid (32%) 
and 2 g DI water at 25 ◦C for 24 h. Air-dried holocellulose samples were 
treated with 17.5% NaOH solution (5 mL) at 25 ◦C for 2 h and then 
diluted with an additional 5 mL of DI water for another 2 h of extraction. 
The sample was centrifugated at 6,000 rpm for 10 min to recover 
α-cellulose. The recovered α-cellulose was washed with 1% acetic acid 
(50 mL) and an excessive amount of DI water and freeze-dried. For the 
GPC analysis, the recovered α-cellulose (8 mg) was derivatized with 
anhydrous pyridine and phenyl isocyanate at 70 ◦C for 72 h reaction. 
After that, the mixture was poured into a methanol/water (7:3) solution 
to precipitate the cellulose derivatives. The cellulose derivatives were 
dried in 40 ◦C vacuum oven. The cellulose molecular weights were 
analyzed by a GPC system (Waters 2498) with three Waters Styragel 
columns (HR 0.5, HR 3, and HR 4E) and a UV detector. The GPC was set 
at 25 ◦C with 1 mL/ min tetrahydrofuran (THF) as a mobile phase. The 
cellulose derivative was dissolved in 1 mL of THF solution and then 
filtered through 0.45 μm PTFE filters. The detector was performed at 
280 nm for detecting the cellulose derivatives. Calibration was con-
ducted with polystyrene standards. The molecular weight of the deriv-
atized cellulose repeating unit (519 g mol− 1) was used to calculate the 
weight-average degree of polymerization (DPw) of cellulose. 

2.6. GPC analysis for molecular weight distribution of lignin 

The molecular weights and distribution of lignin in untreated and 
pretreated sugarcane bagasse were analyzed using a GPC. About 2 mg 
lignin sample was acetylated in acetic anhydride/pyridine mixture (1:1, 
v/v) for 24 h in a dark environment. At the end of the acetylation, the 
acetic anhydride/pyridine in the mixture were rotary evaporated with 
ethyl alcohol. The acetylated samples were dissolved in THF and 
analyzed using a Waters 2948 GPC system as described in section 2.5. 
The ball-milled sugarcane bagasse was extracted with 96 vol% of 
dioxane/water mixture and recovered as control lignin (i.e., milled 
wood lignin, MWL) from untreated biomass for monitoring the struc-
tural changes of lignin during the pretreatment. 

2.7. NMR analysis for lignin structural properties 

The structural properties of each lignin sample were analyzed using a 
2D HSQC NMR system. The dried lignin (~25 mg) was dissolved in 0.5 
mL of DMSO‑d6 solvent (referenced at 39.5/2.49 ppm) and then trans-
ferred to the NMR tube (5 mm). The structural properties of lignin 
samples were analyzed using a Bruker Avance III HD 800 NMR spec-
trometer equipped with a TCI cryoprobe. The 2D HSQC NMR was con-
ducted with 160 ppm spectral width in the 13C dimension with 512 data 
points, 1.2 s relaxation delay, and 32 scans and 12 ppm spectral width in 
the 1H dimension with 1024 data points. For the lignin NMR data pro-
cessing and exporting spectra, TopSpin 4.1.0 software was used. The 
volume integration of specific contours (e.g., Cα, S2/6, G2, H2/6) in the 
HSQC spectra of each lignin sample was conducted for semi-quantitative 
analysis of lignin composition (i.e., S/G/H and other aromatic units) and 
interunit linkages according to the previous study [43]. 

3. Results and discussion 

3.1. Biomass composition of FPA pretreated sugarcane bagasse 

To understand the synergistic impact of FeCl3 aid on PAA pretreat-
ment, individual pretreatments (i.e., PAA and FeCl3), as well as the 
combined pretreatment (i.e., FPA pretreatment), were performed with 
sugarcane bagasse under the same reaction condition (90 ◦C, 60 min). As 
Table 1 presented, PAA pretreatment removed 40.6% of lignin and 
58.2% of xylan, and FeCl3 pretreatment selectively removed xylan 
(43.0%). The decrease of solid recovery was mainly attributed by the 
fractionation of hemicellulose and/or lignin in the pretreatments. Both 
pretreatments preserved cellulose well (98.6% and 93.4% by FeCl3 and 
PAA, respectively). These pretreatment effects of both methods (i.e., 
PAA and FeCl3) were consistent with the results in previous studies 
[44,45] but not as effective as the literature because of the mild pre-
treatment temperature (90 ◦C) in this study. However, further increases 
in pretreatment temperature caused unexpected cellulose loss in our 
preliminary study. For this reason, the FeCl3 aided PAA pretreatment 
(PFA) was applied to improve the pretreatment effects without 
increasing the process severity. FPA pretreatment resulted in 61.0% 
solid recovery by better xylan and lignin removals without further 
glucan loss compared to the single component pretreatments above 
(38.7% in FPA pretreated biomass vs. 36.9% in PAA pretreated biomass 
vs. 38.9% in FeCl3 pretreated biomass, glucan contents in untreated 
biomass dry weight basis). After the FPA pretreatment, the lignin 
removal was determined to be 57.3%, which is 3.6-fold higher than that 
of FeCl3 pretreated biomass and 41.1% higher than that of PAA 

Xylan
/

lignin  removal  (%) =
Xylan/lignin in raw biomass − xylan/lignin in pretreated solid

Xylan/lignin in raw biomass
× 100% (4)   
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pretreated biomass. The xylan removal was 72.2% by FPA pretreatment, 
which is 24.1% and 67.9% higher than that of PAA pretreated biomass 
and FeCl3 pretreated biomass, respectively. The results indicated that 
the PAF pretreatment effectively reduced the recalcitrance factors in 
sugarcane bagasse under mild conditions. 

For the enhancement of pretreatment effects, different times (30 – 
120 min) and temperatures (70 – 130 ◦C) were also tested with PAF 
pretreatment. However, as we noticed earlier, further increase of reac-
tion severity (e.g., pretreatment temperature and time) did not signifi-
cantly improve delignification but notably decreased the total solid 
recovery caused by unwanted cellulose loss (Fig. S1). Also, harsh pre-
treatment conditions possibly cause unwanted lignin modification and 
pseudo-lignin formation, which devalue lignin-based co-products [46]. 

3.2. Degree of polymerization (DP) of cellulose in FPA pretreated 
sugarcane bagasse 

In addition to the biomass composition, the weight-average degree of 
polymerization (DPw) of cellulose was measured to understand the im-
pacts of FPA pretreatment and other pretreatments on sugarcane 
bagasse (Table 1). The DPw of cellulose isolated from untreated sugar-
cane bagasse was ~ 1900, which is comparable to the previous study 
[47]. The DPw of cellulose in sugarcane bagasse was slightly reduced by 
the pretreatments. PAA pretreatment reduced the cellulose DPw to ~ 
1800, FeCl3 pretreatment reduced to ~ 1700, and FPA pretreatment 
lowered it to ~ 1600. These pretreatments partially depolymerized 
cellulose to some extent and transformed the biomass more amenable 
for enzymatic hydrolysis with the increase of reducing ends [48]. 
Although the FPA pretreated sugarcane bagasse has the lowest cellulose 
DP, the decrease in cellulose DP was not as significant as other pre-
treatments in the literature [49,50], which is possibly due to the mild 

reaction conditions of this study. 

3.3. Biological conversion of FPA pretreated sugarcane bagasse 

Enhancement of enzymatic digestibility is the major purpose of 
biomass pretreatment. The production of glucose from untreated and 
pretreated sugarcane bagasse via enzymatic hydrolysis was presented in 
Fig. 1. Untreated sugarcane bagasse had low glucose release (69.75 mg 
glucose/g-biomass) due to its natural biomass recalcitrant factors such 
as lignin and hemicellulose. The effects of these two components in the 
native cell walls on enzymatic hydrolysis of biomass were investigated 
in previous studies [51,52]. The FeCl3 pretreatment did not significantly 
improve the glucose release, as it resulted in 87.75 mg glucose/g- 
biomass. PAA pretreated sugarcane bagasse showed a higher glucose 
release (190.25 mg glucose/g-biomass) than that of FeCl3 pretreated 
biomass and untreated biomass. FPA pretreated biomass showed the 
highest glucose release (313.0 mg glucose/g-biomass) after 72 h enzy-
matic hydrolysis. The amount of glucose released from biomass showed 
the same order of delignification and xylan removal (Fig. 1 and Table 1). 
The results indicate that the enhancement of glucose release could be 
related to the lignin and xylan content in the biomass. In our previous 
studies, cellulose accessibility was significantly increased by the 
delignification and the removal of hemicellulose [17] and directly 
correlated to glucose release [51]. Therefore, the observed results are 
consistent with previous observations. In addition, deconstruction and 
removal of lignin can reduce the chance of nonproductive cellulase 
adsorption and cleave lignin–carbohydrates complexes (LCCs) linkages, 
which affect the cellulose hydrolysis [53,54]. As discussed earlier, cel-
lulose DP was also changed by these pretreatments; however, a signifi-
cant correlation between cellulose DP and glucose release was not 
observed in this study (Table 1 and Fig. 1). 

3.4. Characteristics of the FPA lignin 

To maximize the utilization of biomass, valorization of the recovered 
lignin is essential. Characteristics of lignin provide essential information 
for its post-utilization. Moreover, the preservation of β-aryl ethers in the 
recovered lignin is important for its valorization. For instance, Lance-
field et al. [55] reported that the lignin with high β-O-4 content showed 
better production than the one with low β-O-4 content in both chemo- 
catalytic and bio-catalytic conversion approaches. Therefore, the au-
thors suggested mild treatments which can preserve the majority of β-O- 
4 linkages. Also, Bouxin et al. [56] reported that the β-O-4 linkage 
content influenced the yield and structure of the monomeric products 
when depolymerized by a metal-based catalyst. However, lignin frag-
ments can be condensed and form rigid C–C bonds during the pre-
treatment and recovery processes [57]. This condensed structure in the 
lignin can lower the production of monoaromatics and other products; 
therefore, this modification should be minimized during biomass pre-
treatment. In this study, aromatic units and interunit linkages as well as 
molecular weight distribution of lignin were measured to evaluate its 
quality. Because of the low delignification yield of FeCl3 pretreatment, 
this lignin was not included in the lignin characterization study. 

The structural properties of the fractionated lignin were analyzed by 

Table 1 
Biomass composition and cellulose degree of polymerization (DP) of untreated and pretreated sugarcane bagasse. The values of biomass composition are based on the 
dry weight of untreated biomass. Pretreatment conditions: FPA: 2% peracetic acid and 0.1 mol/L FeCl3, 90 ◦C, 1 h; PAA: 2% peracetic acid, 90 ◦C, 1 h; FeCl3: 0.1 mol/L 
FeCl3, 90 ◦C, 1 h.  

Pretreatment Solid recovery (%) Composition (%) Glucan recovery (%) Lignin removal (%) Xylan removal (%) Cellulose DPw 

Glucan Xylan Lignin     

Untreated — 39.5 ± 0.4 26.3 ± 0.6 25.0 ± 0.3 100  — — 1934 
FPA 61.0 ± 0.8 38.7 ± 0.3 7.3 ± 0.2 10.7 ± 0.1 97.9  57.3 72.2 1595 
PAA 70.0 ± 1.1 36.9 ± 0.3 11.0 ± 0.2 14.8 ± 0.3 93.4  40.6 58.2 1767 
FeCl3 79.3 ± 0.9 38.9 ± 0.4 15.0 ± 0.2 21.0 ± 0.7 98.6  15.9 43.0 1674  

Fig. 1. Enzymatic saccharification of the untreated, ferric chloride (FeCl3), 
peracetic acid (PAA), and FeCl3 aided PAA (FPA) pretreated sugarcane bagasse 
after 72 h enzymatic hydrolysis. Pretreatment conditions: FeCl3: 0.1 mol/L 
FeCl3, 90 ◦C, 1 h; PAA: 2% peracetic acid, 90 ◦C, 1 h; FPA: 2% peracetic acid 
and 0.1 mol/L FeCl3, 90 ◦C, 1 h. 
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2D HSQC NMR. The cross-peak assignments of native lignin (MWL) and 
fractionated lignin samples (i.e., FPA lignin and PAA lignin) were per-
formed according to the previous publications [43]. The aliphatic region 
(δC/δH 50–90/2.5–6.0 ppm) of the fractionated lignins in Fig. 2 presents 
the predominate inter-unit linkages of lignins including β-aryl ethers 
(A), phenylcoumaran (B), and resinol (C). MWL of sugarcane bagasse 
had 36% of β-O-4 linkage, 2% of β-5, and 1% of β-β linkage based on 

total lignin subunit contents. The β-O-4 linkage content in lignin was 
reduced by the pretreatment conditions. The β-O-4 linkages of PAA and 
FPA lignin samples were slightly lower than that of MWL, which are 29% 
and 31%, respectively. However, these lignin samples still preserved 
80.6% – 86.1% of β-O-4 linkage in MWL (Fig. 2 and Table 2). This 
preservation is much higher than in previous studies with 46%–77.4% of 
the preservation of β-O-4 linkages in the untreated biomass [58,59]. In 
this study, C–C bonds like β-5 and β-β linkage contents were notably 
changed by both PAA and FPA pretreatments. 

The chemical shifts of S, G, and H units were observed at δC/δH 
103.8/6.70 (S2,6), 110.8/6.97 (G2), 114.6/6.95 (G5), 119.0/6.70 (G6), 
and 127.7/7.18 (H2,6), respectively (Fig. 3). The cross peaks of p-cou-
marate (PCA) and ferulate (FA) in lignins were observed at δC/δH 130.1/ 
7.48 (PCA2,6), 144.9/7.52 (PCA7), 111.4/7.33 (FA2), and 144.9/7.52 
(FA7). The cross peaks at 94.1/6.56 (T8), 98.6/6.21 (T6), 103.7/7.33 
(T’2,6), and 106.3/7.05 (T3) from tricin (T) in each lignin were also 
assigned in Fig. 3. In previous studies, acid pretreatment caused un-
wanted lignin condensation [5,60,61]; however, mild reaction condi-
tions in this study minimized the side reaction in the fractionated lignin 
samples by PAA and FPA pretreatments. Interestingly, lignin recovered 
from PAA pretreatment showed more H unit content compared with the 
untreated lignin fraction (Fig. 3 and Table 2). This result indicates the 

Fig. 2. HSQC NMR spectra for aliphatic region of fractionated lignins: (a) MWL, (b) FPA: 2% peracetic acid and 0.1 mol/L FeCl3, 90 ◦C, 1 h, (c) PAA: 2% peracetic 
acid, 90 ◦C, 1 h. 

Table 2 
Aromatic unit and interunit linkage contents of untreated and fractionated 
sugarcane bagasse lignin.  

Content (%) MWL FPA lignin PAA lignin 

Syringyl (S) 58 54 53 
Guaiacyl (G) 40 44 37 
p-Hydroxyphenyl (H) 2 2 10 
Ferulate (FA) 6 10 5 
p-Coumarate (PCA) 50 52 56 
β-O-4 36 31 29 
β-5 2 2 3 
β-β 1 1 1 

Note. Content is calculated as a fraction of total lignin subunits (S + G + H). 
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possible transformation of S and G units to H units in a peracetic acid 
environment. Barros et al. [62] also reported demethylation of lignin 
and quinone structure formation through hydroxylation of lignin by 
peracetic acid. However, the H unit content was not increased by PAA in 
the co-existence of FeCl3. Overall, the FPA pretreatment fractionated 
lignin from sugarcane bagasse showed no significant interunit linkage 
cleavage and formation of the condensed structures, as shown in Figs. 2 
and 3 and Table 2. Based on the delignification effects and character-
istics of lignin, FPA pretreatment showed its great potential to produce 
high-quality lignin, which is beneficial for depolymerizing into value- 
added compounds. 

The molecular weight distribution of lignin is another property to be 
used for understanding the pretreatment effects and evaluating the 
quality of lignin. The weight-average (Mw), number-average molecular 
weight (Mn), and polydispersity index (PDI) of MWL and fractionated 

lignin samples were measured by GPC (Table 3). As the β-O-4 linkage 
cleavage was not significant according to the HSQC spectra in Fig. 2 and 
Table 2, the Mw of PAA lignin and FPA lignin were retained at similar 
values. Interestingly, the Mw of PAA lignin was slightly lower, while that 
of FPA lignin was higher than the value of MWL. However, the changes 
in the Mn of these two lignin samples were the opposite. It indicated that 
the lignin decomposition occurred differently with the addition of FeCl3. 
However, additional study is necessary to support this hypothesis. 
Because of these changes in Mw and Mn of lignin samples, the molecular 
weight distribution (i.e., PDI) was slightly increased after PAA pre-
treatment (1.7) while decreased after FPA pretreatment with higher PDI 
(3.3). Overall, FPA pretreatment could fractionate lignin into having 
similar properties to MWL, especially preserving a large portion of β-O-4 
linkage without unwanted condensed structure. These lignin properties 
are desirable in its subsequential chemical conversion or biomaterial 
applications [63]; therefore, the investigated PAF pretreatment is 
promising in future biomass utilization. 

4. Conclusions 

This study shows the synergetic effects of PAA and FeCl3 combined 
pretreatment on sugarcane bagasse characteristics and its enzymatic 
conversion into fermentable sugars. The FPA pretreatment resulted in 

Fig. 3. HSQC NMR spectra for aromatic region of fractionated lignins: (a) MWL, (b) FPA: 2% peracetic acid and 0.1 mol/L FeCl3, 90 ◦C, 1 h, (c) PAA: 2% peracetic 
acid, 90 ◦C, 1 h. 

Table 3 
Molecular weight distribution of fractionated lignins.  

Samples Mw Mn PDI 

MWL 6782 ± 56 3037 ± 20  2.2 
FPA 7069 ± 9 2139 ± 12  3.3 
PAA 6511 ± 37 3767 ± 22  1.7  
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superior effects on delignification and xylan removal compared to in-
dividual PAA and FeCl3 pretreatments showed. The sugar release of FPA 
pretreated sugarcane bagasse was also significantly improved by the 
aforementioned pretreatment effects. The fractionated lignin showed a 
well-preserved intact structure such as relatively high β-O-4 linkage 
content without condensation due to its mild reaction conditions (90 ◦C, 
60 min), which can improve the lignin conversion efficiency in the 
subsequential utilization processes. The introduced FPA pretreatment 
can be a promising pretreatment strategy for the effective utilization of 
both carbohydrates and lignin in sugarcane bagasse. 
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