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Abstract: Sepsis is a life-threatening condition with a high mortality rate. Early prediction and treat-
ment are the most effective strategies for increasing survival rates. This paper proposes a neural 
architecture search (NAS) model to predict the onset of sepsis with a low computational cost and 
high search performance by applying a genetic algorithm (GA). The proposed model shares the 
weights of all possible connection nodes internally within the neural network. Externally, the search 
cost is reduced through the weight-sharing effect between the genotypes of the GA. A predictive 
analysis was performed using the Medical Information Mart for Intensive Care III (MIMIC-III), a 
medical time-series dataset, with the primary objective of predicting sepsis onset 3 h before occur-
rence. In addition, experiments were conducted under various prediction times (0–12 h) for com-
parison. The proposed model exhibited an area under the receiver operating characteristic curve 
(AUROC) score of 0.94 (95% CI: 0.92–0.96) for 3 h, which is 0.31–0.26 higher than the scores obtained 
using the Sequential Organ Failure Assessment (SOFA), quick SOFA (qSOFA), and Simplified 
Acute Physiology Score (SAPS) II scoring systems. Furthermore, the proposed model exhibited a 
12% improvement in the AUROC value over a simple model based on the long short-term memory 
neural network. Additionally, it is not only optimally searchable for sepsis onset prediction, but also 
outperforms conventional models that use similar predictive purposes and datasets. Notably, it is 
sufficiently robust to shape changes in the input data and has less structural dependence. 
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1. Introduction 
Sepsis is a condition in which inflammatory reactions occur all over the body in re-

sponse to infection. Severe sepsis can lead to sepsis shock or even death; it results in tissue 
and organ damage, is a major cause of death worldwide, and has a very high mortality 
rate [1]. Approximately 270,000 people die of sepsis annually in the United States. There 
has been a steady global increase in the number of sepsis-related incidents, with approx-
imately 30 million cases worldwide and 6 million deaths [2]; however, no precise treat-
ment has been developed. Early prediction and active treatment through diagnosis con-
tinue to be the most effective strategies for reducing mortality [3]. Moreover, if sepsis can 
be prevented by predicting in advance, it is possible to reduce the consumption of medical 
resources. 

A method capable of objectively diagnosing sepsis is required to accurately predict 
its onset. Sepsis is a condition that presents a systemic inflammatory response rather than 
originating from a specific pathogen. Thus, the definition and diagnostic criteria for this 
condition keep changing. The purpose of these changes has been to determine and treat 
suspected sepsis more quickly. Sepsis-3, defined in 2016, is the latest definition and is 
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simpler than earlier ones [1]. Although Sepsis-3 has become more practical, it is associated 
with a lower sensitivity than the systemic inflammatory response syndrome (SIRS) [4]. 
This study defines sepsis from a predictive modeling perspective as SIRS plus infection 
[5]. 

This definition was applied to classify cases with and without sepsis. Previous stud-
ies primarily used scoring systems and statistical analysis methods, which are more 
widely applied. The scoring system is rule-based, making it easily applicable and quickly 
implementable in hospitals. Typical scoring systems include the Sequential Organ Failure 
Assessment (SOFA), quick SOFA (qSOFA), and Simplified Acute Physiology Score (SAPS) 
II [6–8]. There have been various prediction studies based on these scoring systems; how-
ever, they have focused mainly on mortality prediction [9]. 

Conditions, such as the region or environment, have not been considered because the 
rules applied to the system have been conservatively determined. Deep learning is being 
applied to overcome this drawback. Many methods have been proposed for labeling, 
learning, and utilizing medical image data to locate and detect the presence of disease [10–
12]. Applying medical time-series analysis is not as effective as applying medical vision. 
Medical time-series data contain less information than images, have many noise-related 
and sensor-based errors, and are complex to analyze. Nevertheless, many attempts have 
been made to improve the predictability using deep learning methodologies based on 
medical time-series data [13–20]. In addition, research on diagnosis prediction has been 
conducted using recurrent neural networks (RNNs) and long short-term memory (LSTM) 
models [14–16], and convolutional neural networks (CNNs) have been used for classifying 
and analyzing time-series data on the image analysis side [17,18]. These deep learning 
methodologies outperform conventional approaches [19,20]; however, a relatively large 
amount of information is required from the input data for accurate results, leading to high 
computational costs. 

The performance of deep learning models is typically reliant on the model architec-
ture determined by human insights and assumptions. To overcome this issue, research is 
underway on neural architecture search (NAS), a method that attempts to automatically 
explore optimal architectures [21]. The NAS is a representative methodology in auto-
mated machine learning that automates the artificial intelligence analysis process. Neural 
network architecture, as well as weights, are included in the training process of the model. 
The NAS has outperformed previous deep learning methods in many fields [22,23]; how-
ever, it incurs a high computational cost for the navigation process. Hence, we propose a 
novel NAS methodology with less computational cost and a high search performance by 
applying a genetic algorithm (GA). Few studies have applied NAS with a GA to medical 
time-series analysis, and this study may even be the first to apply NAS to that field. The 
objective of this study is to improve NAS and demonstrate that it can be applied to sepsis 
prediction. The approach with a fixed neural network structure is difficult to respond to 
fast data changes. The existing NAS requires a high cost of exploration, which makes its 
practical application difficult; however, the proposed model can help predict sepsis 
quickly with an improved approach to these problems. 

The proposed model employs NAS with a GA and is aimed at sepsis onset prediction 
0–12 h in advance. A denoising autoencoder is applied in the pre-processing stage to de-
noise the data and improve learning efficiency. The performance of the proposed model 
was compared with those of conventional scoring systems and simple machine learning—
specifically, SOFA, qSOFA, SAPS II, and LSTM. We also compared the results of existing 
sepsis onset prediction studies by matching the prediction time. 
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2. Methods 
2.1. Gold Standard 

In this study, we define sepsis onset as the start of a 5 h SIRS interval. Calvert et al. 
[24] presented the ninth revision of the International Classification of Diseases (ICD-9) 
diagnostic code and 5 h SIRS as the criteria for sepsis onset; however, there has been a 
change in the diagnostic codes related to sepsis, and ICD-11 is the most recent revision. 
Furthermore, because the definition of sepsis keeps changing, it was necessary to rede-
velop the data used to meet the latest standards. Therefore, we updated the sepsis diag-
nosis to SIRS and suspected infection and used it as the first criterion. For the second cri-
terion, we defined the starting point of SIRS occurrence as the sepsis onset when SIRS 
occurred continuously for 5 h and aimed to predict sepsis onset 0–12 h in advance. Figure 
1 shows the sliding window process. 

 
Figure 1. Target time of a prediction model using a sliding window scheme. The prediction time 
can vary from 0 to 12 h, and 3 h, the primary objective, is for illustrative purposes only. 

2.2. Dataset 
The Medical Information Mart for Intensive Care III (MIMIC-III) includes medical 

data in a relational database [25]. It mainly consists of intensive care unit (ICU) data from 
Beth Israel Deaconess Medical Center in Boston, from July 2001 to October 2012. The data 
include vital signs, laboratory measurements, care providers, notes, fluid balances, and 
diagnostic codes. The dataset contains 26 database tables; we used data from the Charte-
vents, Inputevents, Outputevents, Labevents, and Prescriptions tables for our analysis. 
Moreover, the Admissions and ICUstays table data were used to confirm the consistency 
with the data structure. The Chartevents table contains 330 million chart events with ap-
proximately 13,000 features, such as the heart rate, temperature, and blood pressure. For 
example, when a medical team examines body temperature, the time and value are rec-
orded as an event. Table 1 shows information pertaining to the essential features for gen-
eral consideration, including the number of admissions. There is a difference between the 
admission and adult patient numbers because one patient can be admitted multiple times. 
Therefore, there are more hospitalizations than adult patients. 

Table 1. Baseline characteristics and essential variables are presented as median values (Q1–Q3). 

 Overall 
Admission 58,976 

Adult patients 38,425 
Age 65.86 (52.72–77.97) 

Gender (female) 15,409 
HR 1 (bpm) 84.00 (73.00–97.00) 

MAP 2 (mmHg) 76.00 (67.33–87.00) 
RR 3 (cpm) 18.00 (14.00–22.00) 
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Na (mmol/L) 138.00 (136.00–141.00) 
K (mmol/L) 4.10 (3.80–4.60) 

HCO3 (mmol/L) 24.00 (21.00–26.00) 
WBC 4 (×103/mm3) 11.00 (7.90–14.90) 
PaO2/FiO2 ratio 267.50 (180.00–352.50) 

Ht 5 (%) 31.00 (26.00–36.00) 
Urea (mmol/L) 1577.00 (968.00–2415.00) 

Bilirubin (mg/dL) 0.7 (0.40–1.70) 
1 HR, heart rate; 2 MAP, mean arterial pressure; 3 RR, respiratory rate; 4 WBC, white blood cell count; 
5 Ht, hematocrit. 

The Chartevents table includes times, features, and results in the form of treatment 
records. The records were filtered in the pre-processing stage because there were invalid 
data, and then used for learning. Furthermore, inconsistent units were combined into a 
unit with the majority of recorded counts. For example, among observations of the same 
feature, the units of milligrams and kilograms were mixed. In this case, the unit was uni-
fied in milligrams. When multiple records existed for the same feature simultaneously 
with different values, the Labevents table was given priority. If multiple features only 
have different spacings or are written in similar ways, they were treated as a single fea-
ture. Table 2 shows an example of the format displayed in such a case. 

Table 2. Example of merging when feature id and feature name differ in the same feature. 

Feature ID Name 

Heart rate 211 Heart Rate 
220045 Heart Rate 

Temperature 

678 Temperature F 
223761 Temperature Fahrenheit 

676 Temperature C 
223762 Temperature Celsius 

Systolic blood pressure 

51 Arterial BP (Systolic) 
442 Manual BP (Systolic) 
455 NBP (Systolic) 
6701 Arterial BP #2 (Systolic) 

220179 Non-Invasive Blood Pressure systolic 
220050 Arterial Blood Pressure systolic 

PaO2/FiO2 ratio 

50821 PO2 
50816 Oxygen 

223835 Inspired O2 Fraction 
3420 FiO2 
3422 FiO2 (Meas) 
190 FiO2 Set 

White blood cells count 51300 WBC Count 
51301 White Blood Cells 

Glasgow coma scale 

723 Verbal Response 
454 Motor Response 
184 Eye Opening 

223900 GCS—Verbal Response 
223901 GCS—Motor Response 
220739 GCS—Eye Opening 
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The entire dataset contains episodes. An episode is a 5 h period of data corresponding 
to a monitoring window. Each episode is labeled with sepsis development after the target 
prediction time when the episode is sampled. Patient data are sampled without being dis-
tinguished by the patient in the episode extraction process. Even when extracted from 
different patients of the same age and gender, the episodes are processed in the same way. 
Because the episodes are extracted on an hourly basis, there are more episodes than ICU 
hospitalization records. A patient may have had multiple hospitalizations, and each hos-
pitalization event may have generated multiple ICU records. The missing data rate was 
measured for all the recorded features, and episodes with fewer than 50% of the features 
were excluded. The dataset contained 58,976 patients and 5325 sepsis cases before follow-
ing the above filter conditions. If filtering is first applied to include only adults over the 
age of 18, the number of patients decreases to 50,799, and the number of sepsis cases be-
comes 5319. To categorize a sepsis case, a prescription record confirming an infection is 
necessary; however, even if sepsis occurs, there may be no such infection or SIRS record. 
After excluding cases with no infection or SIRS record, 32,790 patients and 2724 sepsis 
cases remained. Each case had a time condition that exceeded 8 h, including monitoring 
and prediction times. 

If this condition is applied, up to 31,575 patients and 1509 cases of sepsis remain. 
Next, a total of 55,340 episodes become datasets by organizing them into 5 h units. If there 
are more episodes than the number of patients or if the hospitalization time of the patient 
is 5 h or more, sampling is done while moving forward 1 h. Therefore, multiple episodes 
may occur; however, there will be a class imbalance problem if this dataset is used as it is. 
This is because there are only 1500 sepsis episodes out of the approximately 50,000 epi-
sodes. To solve the imbalance problem of the class, we applied the random oversampling 
method to increase sepsis episodes, while decreasing non-sepsis ones by undersampling. 
The newly created instances are included in the original dataset and constitute the final 
dataset. Figure 2 shows the process of creating the final dataset, which was split into train-
ing, validation, and test datasets for the experiments. The ratio of each dataset was ran-
domly sampled and applied at a 5:3:2 ratio. The validation dataset was intended to pre-
vent overfitting, and the test set was used only for the final performance measurement of 
the trained model. 

 
Figure 2. Process of creating the final dataset. 
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2.3. Feature Extraction 
The features used as input are similar to those used in the InSight [24] model and 

SOFA, qSOFA, and SAPS II scoring systems. Table 3 shows the features used in each scor-
ing system, some of which are common. In this study, 40 features were selected for the 
experiments. Although the dataset had 13,000 features, we generally filtered features with 
a missing rate of less than 80%. The filtered results are almost identical to the features 
used in the existing work. Hence, we selected the features by referring to the existing 
studies [2]. The objective was to minimize human intervention; therefore, we did not add 
derivative features based on conventional medical knowledge. 

Table 3. Features in SOFA, qSOFA, SAPS II, and InSight. 

 SOFA qSOFA SAPS II InSight 
Age   O O 

Heart rate   O O 
pH    O 

Systolic blood pressure  O O O 
Pulse pressure    O 
Temperature   O O 

Respiratory rate    O 
Glasgow coma scale O O O  

Mechanical ventilation or CPAP   O  
PaO2 O O O  
FiO2 O O O  

Urine output O  O  
Blood urea nitrogen   O  

Blood oxygen saturation    O 
Sodium   O  

Potassium   O  
Bicarbonate   O  

Bilirubin O  O  
White blood cell count   O O 

Chronic diseases   O  
Type of admission   O  

Platelets O    
Creatinine O    

Mean arterial pressure O    
Dopamine O    

Epinephrine O    
Norepinephrine O    

2.4. Imputation and Denoising 
An additional pre-processing step was performed to improve the learning efficiency 

rather than using the cleaned data for learning. The imputation of the missing values helps 
to convert discrete data into a continuous form and remove noise. Data imputation was 
performed using a nonparametric Gaussian process regression (GPR), which is a nonpar-
ametric kernel-based probabilistic model; it also performs exceptionally well in previous 
versions of the MIMIC dataset [26]. 

Time-series data are sensitive to noise, which can increase the prediction error by 
reducing the learning efficiency of the model. The prediction error can be reduced if a 
denoising process is applied to the data before learning [27]. Generally, wavelet and viral 
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filter techniques are used as denoising methods; however, the denoising level is deter-
mined passively. The autoencoder is a neural network that aims to reproduce itself and 
was applied to automate this process. Various conditions and restrictions can be applied 
in this network to change its structure, thus enabling it to create new output and have the 
desired effect on the original data. Moreover, it can be used for feature recognition because 
it can be reproduced on the basis of the characteristics of the input data [28]. Figure 3 
shows the design of the proposed model. The denoising autoencoder (DAE) was applied 
to reduce noise in the input data. The raw data used in the experiment were normalized 
and denoised through the DAE. The trained DAE is an independent module, and all the 
data inputted to the entire network enter through the DAE. 

 
Figure 3. Structure and input data flow of the proposed model. 

2.5. Proposed Model 
A new NAS methodology was developed to explore neural architectures for sepsis 

prediction. The architecture comprises a large RNN network, as shown in Figure 4. The 
entire model was built by connecting RNN cells, a neural network with N nodes. There-
fore, the purpose of the NAS is to search for the optimal RNN cell architecture, not the 
entire network architecture. An RNN cell comprises nodes which are connected by edges. 
Each node has one activation function, and the possible activation functions are tanh, 
ReLU, identity, and sigmoid. If N nodes and four activation functions are allowed, 4N × 
(N − 1)! cases can be created. Figure 4 shows the architecture and an example of a current 
cell with five nodes. In this study, the number of nodes in the RNN cell was set to 12. 
Thus, there are approximately 1014 models in the search space. Several strategies can be 
utilized to reduce the search cost, given that it takes a considerable amount of time to 
search the entire space. Among these strategies, we used the method of sharing parame-
ters between child networks [22]. The GPU used for this experiment was the NVIDIA TI-
TAN Xp (NVIDIA Corporation, Santa Clara, CA, USA). 
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Figure 4. Example of the process of translating from a genotype into a phenotype. The components 
of a diagonal matrix are the activation functions of each node. The solid arrows in the DAG repre-
sent the selected connections. 

The weights are combined with the connection information to generate an infor-
mation matrix, which is expressed as a directed acyclic graph (DAG). The cell structure is 
determined based on this DAG. The converted network outputs an operation when a node 
is inputted and selects a node when an operation is inputted. 

Once learned, the shared weights are used for subsequent learning when the same 
connection occurs in other networks. The GA was used for the controller to create and 
optimize this RNN cell. The GA has the effect of sharing weights between generations, 
which can reduce navigation costs [23]. Figure 5 shows the search and training processes 
of the prediction model. The GA constructs the population, a chromosome group with 
various genes, and evolves the chromosomes by repeated selection, mutation, and cross-
over to find the solution [29]. The phenotype and genotype were defined, and conversion 
was enabled between them to apply this mechanism to the NAS. In other words, the phe-
notype became an RNN cell, and the genotype became a chromosome. A chromosome 
contains the activation function information for each node, weight information for all pos-
sible edges, and connection information between nodes. Weight information regarding 
the edge is stored after it is learned; therefore, even if the connection continues to change, 
it can be learned faster than from scratch. All the child networks can share these stored 
weights to accelerate the discovery. In the case of the connection information, the connec-
tion can only be made to increase the number of nodes to prevent the cycle. A node with-
out output becomes a terminal node, and the average output of the terminal nodes be-
comes the final output of the cell. The conversion process first converts the genotype into 
the form of an adjacency matrix, then constructs the DAG that it is based on. The genotype 
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chromosome is converted to an RNN cell because the DAG can be expressed as a neural 
architecture. 

 
Figure 5. Neural architecture search and training process with genetic algorithm. 

To start a search, we construct the initial population to create the first generation. The 
population size is set to 100. In other words, a generation comprises 100 chromosomes. 
Each chromosome transforms into an RNN cell to construct the RNN model. The evalua-
tion of the RNN model is based on the accuracy of the validation set, which is used as the 
fitness score of the chromosome. Subsequently, we check to determine if the stop condi-
tion is met. Training is stopped if the loss of validation in 10 epochs does not decrease or 
if the total epoch exceeds 200. The learning rate is set to 0.01, and the Adam optimizer is 
used. Cross-entropy is applied as the loss function. The chromosome with the best perfor-
mance is selected when it meets the stop conditions. If the stop conditions are not met, a 
new generation is constructed, and the evolutionary steps are repeated. 

The first step in creating a new generation is selection. The parent chromosome is 
selected as the elite selection using the roulette selection method. Elite selection involves 
choosing the top 10% of the previous generation of chromosomes as the next generation 
based on the fitness score. Roulette wheel selection is a method of creating a random num-
ber by replacing the fitness score of each chromosome with the area of the roulette wheel, 
similar to throwing a dart and selecting the chromosome in the area containing the num-
ber. Naturally, the higher the fitness score, the larger the area, and the more likely its se-
lection; however, if the highest score is ten times (or more than) the lowest score, the low 
chromosome is rarely selected. This reduces diversity and makes it easier to reach local 
optimization. Therefore, when converting to a roulette wheel, the wheel area was adjusted 
such that the largest area is three times the smallest to select more diverse chromosomes. 
The selection process was repeated until the remaining 90% were filled, with 10% remain-
ing for the elite chromosomes. The chromosomes selected in this stage form a new gener-
ation by creating a child chromosome through the mutation crossover phase. 

Crossover is applied to the two chromosomes chosen in the selection step. It is chal-
lenging to apply crossover in typical neural networks; nevertheless, genotypes can be eas-
ily crossed. The crossover point is randomly selected, and the two chromosomes swap 
genes with one other after the crossover point. In this study, crossover applies to each 
property of the genotype. Weights are crossed between weights, and activation functions 
are crossed between activation functions. The intersection rate was set to 0.7. Mutation 
applies to a single chromosome. The mutation rate determines whether to apply mutation, 
and the mutation process randomly selects one gene and changes it to another. The acti-
vation function changes to any one of the other remaining functions. For the weight, it 
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changes to a random value. As shown in the above process, the parameters between the 
chromosomes are shared during the production of a new generation, thus reducing the 
search cost. 

2.6. Evaluation 
To summarize the experimental process, if data divided into 5 h blocks are inputted, 

the predictions are made 0–12 h later and subsequently classified on the basis of the pre-
dictions. The classification results show whether the predictions are good or bad. The 
model performance is evaluated with a test set that is not used in the training process. The 
performance of the proposed model was evaluated using the area under the receiver op-
erating characteristic curve (AUROC) regions of sensitivity, specificity, and receiver op-
erating characteristics. The sensitivity and specificity can be calculated from a combina-
tion of true positive (TP), true negative (TN), false negative (FN), and false positive (FP). Sensitivity 𝑇𝑃𝑇𝑃 𝐹𝑁 ,       Specificity 𝑇𝑁𝑇𝑁 𝐹𝑃 

The created RNN model was compared with existing scoring systems (SOFA, 
qSOFA, and SAPS II), machine learning models such as InSight and LSTM, and the results 
of previous studies [14,20,24,30–40]. 

3. Results 
The key features related to the vitals used in the experiment are the shape of some 

actual data and the process of testing the trained model, as shown in Figure 6. The fluctu-
ation is considerable except for the body temperature. These data are sent through a noise 
removal process using a trained model, followed by a prediction process. Table 4 shows 
the sepsis onset prediction results which were obtained by the various models, including 
rule-based scoring systems [14,20,24,30–40]. The existing studies summarized in Table 4 
are all sepsis predictions, and the AUROC is included in the evaluation criteria; however, 
the definition of sepsis and the dataset used in the experiment are different. It is also nec-
essary to consider that the timing and definition of the prediction are slightly different. 
Only the best results of the existing studies are used in the comparison with the proposed 
model. 

 
Figure 6. Example of a flow using actually vital data during a test. 
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The prediction time was set to 3 h for SOFA, qSOFA, SAPS II, and LSTM. Antibiotic-
based treatment requires a certain amount of time and may be successful when sepsis is 
predicted early. Therefore, the primary purpose of the proposed model was to predict 
sepsis at least 3 h before the onset. The SAPS II scoring system produced an AUROC of 
0.68. The lowest AUROC was 0.63 for SOFA, and qSOFA produced an AUROC of 0.65. 
The sensitivity (0.65) of SOFA and SAPS II was higher than that (0.61) of qSOFA; however, 
SOFA produced the lowest specificity of 0.58. The specificity values of qSOFA and SAPS 
II were 0.75 and 0.77, respectively. qSOFA and SAPS II showed similar results in terms of 
sensitivity and specificity. LSTM outperformed these scoring systems, with a sensitivity 
of 0.83; however, the specificity of LSTM was 0.74, lower than that of SAPS II and similar 
to qSOFA. The AUROC of the LSTM was 0.84, the highest among all the scoring systems. 
The proposed model showed the highest performance among the compared models, with 
a sensitivity of 0.93, a specificity of 0.91, and an AUROC of 0.94, based on a 3 h prediction 
time. 

We experimented by varying the prediction time from 0 to 12 h to compare the pro-
posed model with previous studies. Few of the existing studies matched all environments, 
including datasets and predictive purposes. In particular, this study is the first to predict 
sepsis using NAS. Nevertheless, we refer to a measure of the performance in the same 
prediction time. Five of the existing studies, listed in Table 4, used the MIMIC-III dataset. 
The models that showed better results are InSight [30] and DeepAISE [39]. With a predic-
tion time of 4 h, InSight reported an AUROC of 0.74, and DeepAISE produced an AUROC 
of 0.87. Our model showed a sensitivity of 0.91, specificity of 0.86, and AUROC of 0.93 for 
the same prediction time. 

Table 4. Experimental results of the proposed model and summarized existing research results. 

Authors Dataset Model Prediction 
Time Sensitivity Specificity AUROC 

(95% CI) 
Calvert et al. [24], 

2016 MIMIC-II InSight 3 h 0.90 0.81 0.83 

Desautels et al. [30], 
2016 MIMIC-III InSight 4 h 0.80 0.54 0.74 

Kam et al. [20], 
2017 MIMIC-II LSTM 3 h 0.91 0.94 0.93 

Nemati et al. [31], 
2018 

MIMIC-III AISE 4 h 0.85 0.67 0.85 

Khojandi et al. [32], 
2018 

Oklahoma State Uni-
versity 

RF 0 h 0.99 0.97 0.90 

Moor et al. [33], 
2019 

MIMIC-III MGP-TCN 7 h - - 0.86 

Li et al. [34], 
2019 

2019 PhysioNet/CinC 
Challenge dataset 

CNN+RNN 12 h - - 0.75 

Scherpf et al. [14], 
2019 

MIMIC-III RNN 3 h 0.90 0.47 0.81 
(0.79–0.83) 

Lauritsen et al. [35], 
2020 

The Danish National 
Patient Registry 

CNN+LSTM 3 h - - 0.86 

Yang et al. [36], 
2020 

2019 PhysioNet/CinC 
Challenge dataset 

XGBOOST 1 h 0.90 0.64 0.85 

Bedoya et al. [37], 
2020 

Duke University 
Hospital 

MGP-RNN 4 h - - 0.88 
(0.87–0.89) 

Li et al. [38], 
2020 

2019 PhysioNet/CinC 
Challenge dataset 

LightGBM 6 h 0.86 0.63 0.85 
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Shashikumar et al. [39], 
2021 MIMIC-III DeepAISE 4 h 0.80 0.75 0.87 

Rafiei et al. [40], 
2021 

2019 PhysioNet/CinC 
Challenge dataset SSP 4 h 0.85 0.81 0.92 

This study MIMIC-III 

SOFA 3 h 0.65 0.58 
0.63 

(0.59–0.67) 

qSOFA 3 h 0.61 0.75 
0.65 

(0.62–0.68) 

SAPS II 3 h 0.65 0.77 
0.68 

(0.66–0.70) 

LSTM 3 h 0.83 0.74 
0.84 

(0.81–0.87) 

The proposed 
model 

3 h 0.93 0.91 
0.94 

(0.92–0.96) 

4 h 0.91 0.86 
0.93 

(0.92–0.94) 

8 h 0.88 0.82 0.87 
(0.84–0.90) 

12 h 0.86 0.81 0.83 
(0.81–0.85) 

Figure 7 shows a representation of the AUROC, sensitivity, and specificity values, 
with the prediction time ranging from 0 to 12 h. When the prediction time is 2 h, the sen-
sitivity and specificity are significantly reduced. The sensitivity and specificity tend to 
decrease differently. The sensitivity decreases significantly when the prediction time is 
between 2 and 8 h, and the decrease is reduced after 8 h. The specificity decreases steadily 
up to 8 h and then levels off. The specificity decreases more over time than the sensitivity. 
The sensitivity is always 0.85 or higher, whereas the specificity is 0.80 or higher. When the 
forecast time is in the range of 3–12 h, the AUROC ranges from 0.94 to 0.83. 

 
Figure 7. AUROC, sensitivity, and specificity of the proposed model, with the prediction time rang-
ing from 0 to12 h. 

The architecture of the RNN cell that produced the best performance in the experi-
ment used 12 nodes, as shown in Figure 8. Although there were four activation functions 
in the search space, only the tanh and ReLU functions were ultimately selected. The input 
tended to be tanh and the output ReLU. The final output was the average of the five nodes. 
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In particular, the input part-side connections were distributed, and information was gath-
ered from the multiple nodes in the output part. More irregular skip connections were 
found than in human-designed models. More skip connections imply more information 
delivery between the nodes. The 12-node architecture took 16 h to process. 

 
Figure 8. The RNN cell discovered in the proposed model. 

4. Discussion 
The discovered architecture exhibited a higher predictive performance than conven-

tional methods. A sepsis prediction experiment was conducted on an ICU dataset called 
MIMIC-III, and the experimental results of the proposed model were compared with those 
of scoring systems and machine learning methods. The scoring systems produced an AU-
ROC in the range of 0.6–0.7, with most of the results being 0.7 or higher when machine 
learning methods were applied. The machine learning methods showed better prediction 
results than the scoring systems. Nevertheless, scoring systems are widely used owing to 
their ease of application, which is a significant advantage; however, the rules for the scores 
are conservative, and hence, false alarms occur frequently. Machine learning methods per-
form well but require a great deal of resources to train the model and may overfit the 
cohort used for training. 

Therefore, it is difficult to compare research conducted using machine learning meth-
odologies. The experimental results depend on the model-training objective, evaluation 
method, and dataset. AUROC used conditions that were difficult to match, as a rough 
measurement of the differences in this study. Therefore, the difference in the AUROC 
should be understood considering the complex experimental environment. Kam et al. [20] 
used a similar definition and prediction method for sepsis, but with different datasets. In 
addition, the number of cases used for training was different because of the various pre-
processing methods used for the datasets. Existing studies based on the same dataset, 
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namely MIMIC-III, also showed different results for different purposes. Desautels et al. 
[30] applied the InSight algorithm and obtained an AUROC forecast time of 0.74 for 4 h. 
Nemati et al. [31] proposed AISE, and Shashikumar et al. [39] proposed DeepAISE, with 
AUROC forecast times of 0.85 and 0.87 for 4 h, respectively. Moor et al. [33] proposed 
MGP-TCN, with an AUROC forecast time of 0.86 for 7 h. Studies that used the 2019 
Physionet/CinC Challenge dataset, which includes parts of MIMIC-III, were compared. 
We screened several studies that used this dataset and summarized those that produced 
high AUROC scores. Li et al. [34] recorded an AUROC of 0.75 for a 12 h prediction, and 
Yang et al. [36] obtained an AUROC of 0.85 for a 1 h prediction. Li et al. [38] proposed a 
model based on LightGBM and obtained an AUROC of 0.85 for a 6 h prediction. Rafiei et 
al. [40] proposed a model called SSP and demonstrated an AUROC of 0.92 for a 4 h pre-
diction. Our model recorded the highest AUROC, based on the same dataset and predic-
tion time, thus demonstrating better performance than conventional scoring systems. 

The proposed model automatically generates neural network architectures for pre-
diction, which brings significant advantages in terms of flexibility. In general, the struc-
ture of the model relies heavily on data when training deep learning models. Therefore, if 
the shape and distribution of the data vary, it is difficult to obtain optimal results without 
changing the model architecture. The proposed model automatically changes its architec-
ture, even if the data are constantly changing, to achieve optimal results. In addition to 
structural changes, skip connectivity is the main difference between the proposed and 
human-made models. This means that nodes are not sequentially connected layer-wise 
but are connected beyond the intermediate node to another node. This technique is used 
to input information that is diluting backward and reflect it on the nodes close to the out-
put; however, it is challenging to add skip connections manually because there is no 
standardized skip connection method. Therefore, manually configured models have few 
skip connections or they are added using a rule. In comparison, the proposed model has 
many irregular skip connections. 

This phenomenon can be explained by assuming that the loss function surface 
changes smoothly when a skip connection exists [41]. In the absence of skip connections, 
the solution space of the loss function is irregular, which is likely to cause a local optima 
problem. Conversely, smooth surfaces are likely to find the best solution with minimal 
movement. Therefore, this is considered a factor that allows the proposed model to out-
perform the existing models. 

Despite the many advantages of our method, this study has some limitations. First, 
the computational cost will be high when used in real-world situations if the medical staff 
updates the model through real-time learning. For real-time learning and updating, the 
search space needs to be scaled down, or more efficient navigation strategies are required. 
Second, the GPR used in the data imputation requires a high computational cost, particu-
larly when the number of samples is small and data with high variance and noise are 
outputted. A process for checking and filtering the outputted values is necessary because 
some of these output values are not realistic. 

5. Conclusions 
Sepsis is a potentially fatal condition with very high mortality rates. Therefore, early 

response through prediction is vital. This study proposed and developed a sepsis onset 
prediction model by applying NAS methodology with a GA optimization process to re-
duce exploration cost and improve efficiency. The objective was to predict sepsis onset 0–
12 h in advance, and this approach was designed to minimize human intervention 
throughout the process. Therefore, the proposed model was devised to reduce depend-
ence on its structure and be more flexible in response to input data. The results showed 
that the proposed model outperforms existing methodologies, with an AUROC of 0.94 for 
a 3 h prediction. 

As part of future work, we hope to validate the proposed model and improve its 
performance on datasets with the most recent definition, Sepsis-3. We also plan to further 
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validate the usefulness of the model using a variety of real-world data. It would be inter-
esting to check whether it would be possible to find optimal structures for sepsis and other 
medical time-series data. 
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