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Abstract— A key to successful face recognition is accurate
and reliable face alignment using automatically-detected facial
landmarks. Given this strong dependency between face recog-
nition and facial landmark detection, robust face recognition
requires knowledge of when the facial landmark detection al-
gorithm succeeds and when it fails. Facial landmark confidence
represents this measure of success. In this paper, we propose
two methods to measure landmark detection confidence: local
confidence based on local predictors of each facial landmark,
and global confidence based on a 3D rendered face model.
A score fusion approach is also introduced to integrate these
two confidences effectively. We evaluate both confidence metrics
on two datasets for face recognition: JANUS CS2 and IJB-A
datasets. Our experiments show up to 9% improvements when
face recognition algorithm integrates the local-global confidence
metrics.

I. INTRODUCTION

Facial landmark detection is an essential preliminary step

for many facial analysis tasks such as face recognition [26].

Accurate facial landmarks are needed in order to align faces

between images, improving robustness of face recognition.

When face alignment is performed with poorly detected

facial landmarks, face recognition is likely to fail. Zhang

et al. [26] shows the importance of alignment by proposing

pose-aligned network.

The problem of automatic facial landmark detection has

seen much progress over the past years [6], [2], [23], [25],

[27], [12]. However, few studies focus on measuring the

confidence of detected landmarks. Fig. 1 shows an example

of good and bad landmarks. If we can predict the confidences

of the landmarks, it would benefit face recognition.

In this paper, we propose a new method for measuring

landmark confidence. One is the constrained local method,

and the other is rendering based global method. The local

method can measure accuracy based on local predictors of

each facial landmark, and the global method can predict

the confidence from 3D rendered faces. While the local

confidence measures the goodness of landmarks based on the

2D aligned images, the global confidence measures it from

the 3D rendering point of view. The merit of using these
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(a) Good confidence landmarks

(b) Poor confidence landmarks

Fig. 1. Example landmark detection results. How do we determine whether
detected landmarks are good or not?

two confidences is they can help alleviating the influences

of the poorly aligned face images on face recognition so as

to improve recognition accuracy.

Fig. 2 illustrates how the proposed confidences are inte-

grated in the face recognition framework. In this framework,

we match not only the face images with 2D alignment

(affine transformation) but also the cropped ones (without

alignment) given the bounding boxes from the ground truth

annotation or face detector. Namely, each image pair (one

is from the gallery set and the other from the probe set) is

associated with two matching scores (denoted as Score 1 and

Score 2 in Fig. 2). While the 2D-aligned images are used

to measure the local landmark confidence, the 3D-aligned

ones are employed to obtain the global confidence. In order

to determine if this face image pair comes from the same

person or not, we propose an approach to integrate local-

global confidence using the nonlinear transform fusion. In

this way, we can determine the fusion weights effectively

for both matching scores and enhance the face recognition

accuracy.

In the following sections, we first present the work related

to our approach. In Section III, we describe our local-global

confidence metrics and their application on face recognition.

We follow this with the experiments (Section IV) and results

(Section V) to evaluate the effectiveness of our landmark

confidences and score fusion method for face recognition

on JANUS CS2 dataset and IJB-A dataset [13]. Finally,

we conclude our work in Section VI and propose future

directions.
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Fig. 2. The Overview of our face recognition framework and the way of generating two types of landmark confidences. The probe and gallery images are
from JANUS CS2 dataset. The fusion of matching scores from 2D Alignment and cropping only is achieved with the help of landmark confidences.

II. RELATED WORK

There have been various studies on facial landmark detec-

tion. Their approaches can be divided into two ways.

The first method is based on a cascaded regression

approach which directly applies regressor into appearance

in order to estimate landmarks [6], [23], [27]. Recently,

there have been several studies done using deep learning

techniques, such as Zhang et al. [25], and Sun et al. [22].

The second method is to extract appearance descriptor, and

compute local response map, then fit the shape model based

on the local predictions. The most representative methods are

the Constrained Local Model (CLM) [20], Constrained Local

Neural Fields (CLNF) [2] and Discriminative Response Map

Fitting (DRMF) [1]. Rajamanoharan and Cootes [18] and

Kim et al. [12] proposed the more robust method on large

pose variations.

Despite of many studies on landmark detection, there

are few studies on confidence which evaluate landmark

confidence. Steger et al. [21] proposed failure detection

method for facial landmark detector and this method allows

recovery from failures. Steger et al. [10] proposed landmark

localizations quality assessment using a regression to the

Area Under the Point Accuracy Curve (AUPAC) which

defined for the trade-off curve between the distance threshold

and the obtained recall. Confidence is important in various

aspects: it allows us to improve the landmark detection,

furthermore, it can be used in later pipeline by weighting

on the scores.

Score Fusion for Face Recognition Face recognition is

usually achieved by matching one face image to another,

and assigning a matching score to show the possibility these

two face images are from the same person or not. It is

often the case that we have multiple matching scores due to

multiple medias for a face (e.g., 2D and 3D) or (and) multiple

matching methods (e.g. Euclidean distance or inner product)

or (and) multiple features (e.g. CNN features learned from

aligned images or cropped images as in Fig. 2) for example.

Therefore, we need to obtain a single score for the considered

matching pair by score fusion. The most widely used fusion

methods are the average, maximum or minimum fusion [19],

[5]. In [15], the ensemble SoftMax method is shown to be

effective on fusing the scores from matching face images of

different poses. Recently, the quality based fusion approaches

have been proposed [5], [17] to integrate the quality of the

score into fusion. In [5], the qualities of individual media

are directly utilized as the weights to combine five types of

media: 2D face image, video, 3D face model, sketch, and

demographic information. However, the media quality itself

might be noisy and a better transformation from it to the

fusion weight is needed. [17] proposes a unified Bayesian

framework that incorporates the quality information elegantly

for multimodal biometric fusion. One of the drawbacks

of this approach is that we need the accurate probability

estimation of class labels given the features and qualities. In

this work, we fuse the matching scores from 2D alignment

and cropping only by incorporating the landmark confidence,

which is transformed to the fusion weight by a sigmoid

function.

III. LANDMARK CONFIDENCES AND THEIR

APPLICATION ON FACE RECOGNITION

In this section, we introduce our confidence model for

facial landmark detection. First, we start by describing a con-
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strained local confidence model (Section III-A). We follow

this by a description of global confidence model in Section

III-B.

A. Constrained Local Confidence
Our constrained local confidence builds from the Con-

strained Local Neural Field (CLNF) [2] deformable model.

We compute the facial landmark by using CLNF. For a given

set of k facial landmark positions x = {x1, x2, ..., xk}, our

model defines the likelihood of the facial landmark positions

conditioned on image I as follows:

p(x|I) ∝ p(x)

k∏

i=1

P (xi|I). (1)

In Equation (1), p(x) is a prior distribution over set of

landmarks x following a 3D point distribution model (PDM)

with orthographic camera projection. Similarly to Saragih et
al. [20], we impose a Gaussian prior on the non-rigid shape

parameters on the model. P is a probabilistic patch expert

that describes the probability of a landmark being aligned

(response map). Patch experts (also called local detectors)

are a very important part and from these patch experts, we

can infer local confidence. P can be any model producing a

probabilistic predictions of landmark alignment. In our work,

we define P as a multivariate Gaussian likelihood function

of a Continuous Conditional Neural Field (CCNF) [3]:

P (y|I) = exp(Ψ)∫∞
−∞ exp(Ψ) dy

, (2)

Ψ =
∑

yi

K1∑

k=1

αkfk(yi,W(yi; I), θk) +
∑

yi,yj

K2∑

k=1

βkgk(yi, yj),

(3)

Above y is a m×m area of interest in an image around

the current estimate of the landmark (the area we will

be searching in for an updated location of the landmark),

W(yi; I) is a vectorized version of an n × n image patch

centered around yi and is called the support region (the area

based on which we will make a decision about the landmark

alignment, typically m > n), fk is a logistic regressor, and

gk is a smoothness encouraging edge potential [3]. It can

be shown that (2) is a Multivariate Gaussian function [3],

making the exact inference possible and fast to compute. The

model parameters [α, β, θ] of the CCNF are learned by using

Maximum Likelihood Estimation (using BFGS optimization

algorithm).
In order to optimize (1), we use Non-Uniform Regularized

Landmark Mean-Shift which iteratively computes the patch

responses and updates the landmark estimates by updating

the PDM parameters [2].
After optimizing (1), the model likelihoods from each

response map are computed. To obtain the local confidence,

we take a sum of log probabilities over all of the likelihoods

and normalize them to the range between 0 and 1. We

used multi-view (three-view) initialization for CLNF model,

therefore, confidences need to be normalized according to

their view.

TABLE I

THE STRUCTURE OF OUR CONVOLUTIONAL NETWORK USED FOR

GLOBAL CONFIDENCE ESTIMATION.

Name Type Filter Size Stride Output Size
Conv1 convolution 32x3x3 1 32x94x94
Pool1 max-pooling 2x2 2 32x47x47
Conv2 convolution 64x2x2 1 64x46x46
Pool2 max-pooling 2x2 2 64x23x23
Conv3 convolution 128x2x2 1 128x22x22
Pool3 max-pooling 2x2 2 128x11x11
Dense1 fully connected 400
Dense2 fully connected 400
Dense3 fully connected 1

B. Rendering based Global Confidence

We have observed that various facts can affect the quality

of rendered images. Not only the alignment error from poor

landmarks, but also image quality, illumination or rendering

error itself can affect the rendering quality and this has a big

influence on the recognition performance. Local confidence

can only estimate landmark quality, therefore, we need to

predict global confidence for rendered images. Our proposal

is motivated by these factors.

We use rendering technique to generate synthetic faces

[15], and rendered faces were used for the matching. We

render images not only to frontal (0◦), but also to half-profile

(40◦) and profile view (75◦) in order to cope with extreme

yaw angles. We use three CNN (Convolutional Neural Net-

work) for each rendered view to train our global confidence

for rendered images. Table I shows the CNN architecture

used in our work. A gray-scale rendered image of size 96×96

is used for input and pixel values are normalized to the range

between 0 and 1. The output is a value which represents

the global confidence. We use the Euclidean distance as the

network loss:

lossconfidence = ‖Ĉi −Ci‖22, (4)

where Ĉi is the annotated value, and Ci is the predicted

confidence for training image Ii.
C. Applying Landmark Confidences on Face Recognition

In general, face recognition relies on matching one face

image to another, and the matching score is computed to

evaluate the probability whether these two images are from

the same person or not, as shown in Fig. 2. In this work,

the matching score is computed by the correlation distance

following [15]. We have two scores (Score 1 and 2 in Fig. 2)

by matching two types of face images: with 2D alignment

or not (cropping only). The motivation of matching cropped

images is to compensate for matching the poorly 2D-aligned

images (due to the bad landmarks detected). Now, the

problem becomes how to combine these two scores. We

employ either or both of the proposed landmark confidences

to determine the fusion weights.

While the local confidence measures the goodness of

landmarks based on the 2D aligned images, the global
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confidence measures it from the 3D rendering point of view.

Since both of them reflect the quality of matching scores

from 2D aligned images, the lower the confidence is, the

lower the fusion weight of this score should be. To model

the relation between the landmark confidence and the fusion

weight, we exploit a sigmoid function:

wA =
1

1 + exp(−m× (l − r))
(5)

where m and r are the slope and offset of the sigmoid

function. l is the local confidence or global confidence. The

average of the local and global confidences is used when

we consider both before applying the sigmoid function. wA

is the fusion weight of the matching score from the 2D

alignment and the weight of the score from the cropping

only is simply 1− wA.

Exploiting the sigmoid function ensures the fusion weight

is always in the range of [0, 1] and has more flexibility to

model the relationship between the confidences and fusion

weights such as nonlinearlity. Note that there are two land-

mark confidences (local or global) for a given face image

pair, we take the minimum of them1 as a single confidence

associated with this matching score.

IV. EXPERIMENTS

The datasets we used and the experimental procedures we

followed are presented in this section.

A. Datasets

For the CLNF patch expert training, we used Multi-PIE [9]

and the training partitions of HELEN [14] and LFPW [4].

Furthermore, we used a multi-view and multi-scale approach

as described in Baltrušaitis et al. [3].

The CASIA WebFace dataset [24] is used for CNN

training for global confidence which is currently the largest

publicly available dataset and contains roughly 500K face

images.

We evaluate the local and global landmark confidences for

the matching score fusion on JANUS CS2 dataset and IJB-A

dataset [13]. JANUS CS2 dataset 2 is the extended version

of IJB-A dataset 3. Both JANUS CS2 and IJB-A datasets

include unconstrained faces of 500 subjects with extreme

poses, expressions and illuminations. JANUS CS2 dataset

contains not only the images and sampled key frames but also

the original videos of a subject. Also, JANUS CS2 dataset

includes much test data for identification and verification

than IJB-A dataset.

B. Methodology

In Equation (5), the slope and offset of the sigmoid

function are selected in the range of [3, 5, 7, 9], and

[0.1, 0.2, 0.3, 0.4, 0.5] respectively based on the performance

1The average and max values are also experimented, but the min value
perform the best empirically.

2The JANUS CS2 dataset is not publicly available yet.
3IJB-A is available under request at http://www.nist.gov/itl/

iad/ig/ijba_request.cfm

Fig. 3. Correlation between local confidence and eye distance normalized
RMS error. When the local confidence is higher, the RMS error is smaller

of the validation set (created in the gallery set). In the fol-

lowing, the LandMark Confidences are shortened as LMCs.

Regarding the score fusion, the baselines we compare can

be divided into three categories: (1) No score fusion: The

matching scores from 2D alignment or cropping only, (2)

The fusion methods without LMCs: The average, max, min,

weighted average fusion methods. In the weighted average

method, we use the grid search method and pick the fusion

weight of the matching score from 2D alignment in the

range of 0.1 to 0.9 with interval 0.1 based on the validation

set performance, and (3) The fusion methods with LMCs:

Score replacement, which replaces the scores from the 2D

alignment with the ones from cropping only, when the con-

fidence (local or global or the average of them) is less than

a threshold (the threshold is picked in [0.1, 0.2, 0.3, 0.4, 0.5]
based on the validation set performance). We also compare

our approach to [5] by using the landmark confidence directly

as the fusion weight without any transformations (denoted as

Local LMCs Only in Table II).

V. RESULTS AND DISCUSSION

In this section, we analyze and evaluate our two confidence

models. Also, we demonstrate the efficacy of landmark

confidences on face recognition by applying them on the

face matching score fusion.

A. Evaluation of Local Confidence

Fig. 3 shows the relation between local landmark con-

fidence and eye distance normalized Root-Mean-Square

(RMS) error. Since JANUS CS2 is annotated only with

3 key-points on the faces (two eyes and nose base), the

error is normalized by the distance between two eyes. We

use 25K images from JANUS CS2 dataset but only 2.5K

points are plotted to avoid visual distractions. The equation

of the regression line is y = 0.4237e−2897x. Coefficient of

determination, R2 is 0.422 and it means 42% of the points

fall within the regression line. When the local confidence is

above 0.6, most of the eye distance normalized RMS errors
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Fig. 4. Example predicted scores from CASIA test set. Rendered images
to profile view (75◦). Higher numbers are better

are below 0.1. This shows that the local confidence above

0.6 is predicting well the align error.

B. Evaluation of Global Confidence

We had two coders who produced annotations for quality

of rendered images. Good (+1) and bad (0) annotations are

used as labels. To measure inter-coder agreement, we use

Krippendorffs alpha [11]. The Krippendorffs alpha value

from the two coders is 0.875 which is relatively high since

the variable is easy to code. The agreement between the

two coders was considered as the gold standard in our

experiments. We began training at a learning rate of 0.001

and the learning rate was dropped to 1e−8 with 0.1 step and

set the momentum to 0.9.

We test the CNN classifier based on the 2.5K of CASIA

synthesized images. Among 10K images, three forth images

were used for training and one forth images were used for

test. Images in the training set were not used in testing.

Accuracy of good and bad classification was 95.19% for test

set and 99.91% for training set. Fig. 4 shows the example of

predicted scores from CASIA test set.

C. Confidences Analysis for Face Recognition

We analyze the relationship between confidences and

matching scores. Only one image per template was left to

get image-to-image matching scores and we obtained all

scores of genuine pairs. Fig. 5 shows the correlation between

confidences and matching scores. As shown in left figures,

when the confidence of each pair is higher, the score is

also higher (the red means higher). Right figures are the

histogram of scores of both high (confidence above 0.7)

and low (confidence below 0.3) confidence pairs, and they

show significant difference in distribution (global confidence

p = 3.44e−53, local confidence p = 1.59e−40 at significance

level p < 0.001). Considering this analysis, it makes sense

to put some weight from both confidences during fusion

process.

D. Local and Global Confidences for Face Recognition

In this section, we evaluate the local and global landmark

confidences for fusing the matching scores from the 2D

(a) Relation between global confidence and matching scores

(b) Relation between local confidence and matching scores

Fig. 5. Correlation between confidences and matching scores of genuine
pairs Image-to-Image matching score (left) and histogram of scores of both
high and low confidence pairs (left).

alignment and cropping on JANUS CS2 dataset and IJB-

A dataset [13]. Since there are multiple scores for each

probe-to-gallery image pair, we use the ensemble SoftMax

method [15] to obtain a single matching score to measure the

similarity between a probe image set and a gallery image

set. Following [13], the average verification performances

(in terms of TARs at 1%, 0.1%, and 0.01% FARs) and

identification performances (in terms of Rank-1, Rank-5, and

Rank-10 identification rates) are employed for evaluation

and reported in Table II and Table IV. The LandMark

Confidences are shorten as LMCs in both tables. The bench-

mark evaluation measures including the Receiver Operating

characteristic curve (ROC) and the Cumulative Match curve

(CMC) for Janus CS2 dataset are also displayed in Fig. 6 and

7. Table III demonstrates the comparisons of our method

to the commonly used face recognition systems including

COTs [13], GOTs [13], Fisher Vector [8], and J.-C. Chen et
al. [7] on Janus CS2 dataset.

As can be seen in Table II, our method (local LMCs +

Sigmoid) outperforms no score fusion, the methods without

considering LMCs, and use the LMCs directly as weights

by ∼ 21.2%, ∼ 8.8%, ∼ 9.1% in average for TAR at 0.01%

FAR respectively. It can also be seen that the rendering based

global confidence achieves the similar improvement, showing

the goodness of rendered images also help to evaluate the

matching score quality and determine the fusion weights

properly. Considering both the local and global confidences

further improves the face verification rate in low FARs and

the identification rate in rank-1, which can also be seen in

Fig. 6 and 7. In Table IV, similar improvements can be

oberserved. Moreover, the influence of global confidences

is most significant when requiring large TAR at small FAR

(e.g. FAR@1e-4), as shown in Table II and Table IV.
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TABLE II

AVERAGE PERFORMANCES OF THE SCORE FUSION ON JANUS CS2 DATASET WITH LOCAL AND GLOBAL CONFIDENCES.

Matching method ↓ TAR(%) Identification Rate (%)
Eval. Measures → FAR@1e-2 FAR@1e-3 FAR@1e-4 Rank-1 Rank-5 Rank-10
2D Alignment [15] 86.91 59.02 24.90 83.66 92.10 94.31
Cropping Only (Unaligned) [16] 72.33 39.34 16.05 69.60 86.11 90.74

Average [19] 86.64 64.01 35.64 82.93 92.24 94.68
Max [19] 82.96 53.05 23.26 79.00 90.82 93.78
Min [19] 85.15 63.39 36.81 81.92 91.96 94.23
Weighted Average 87.56 65.51 35.78 83.76 92.58 94.85

Score Replacement 87.56 63.33 32.06 83.27 92.29 94.60
Local LMCs Only [5] 85.95 61.77 33.11 81.74 91.74 94.21
Local LMCs + Sigmoid 88.83 68.90 41.64 85.03 92.96 95.13
Global LMCs + Sigmoid 87.36 67.00 42.51 83.32 92.29 94.45
Local + Global LMCs + Sigmoid 88.76 69.24 43.19 85.03 92.86 94.97

Fig. 6. Comparative performance (ROC) on JANUS CS2 dataset for our
confidence based fusion method for face verification. Only TARs of 0% to
1% FARs are shown.

Table III demonstrates the comparisons of our method

to the commonly used face recognition systems including

COTs [13], GOTs [13], Fisher Vector [8], and J.-C. Chen et
al. [7] on Janus CS2 dataset. As can be seen, our method

performs better than the other face recognition systems.

Notice in Fig. 6 and 7 that using LMCs as fusion weights

directly (denoted as Local LMCs Only) performs worse than

the weighted average (without LMCs) in low FARs, but

performs much better after applying the sigmoid function.

This implies that the relationship of the landmark confidences

and fusion weights is nonlinear, and can be better modeled

by adjusting the slope and offset of the sigmoid function. To

sum up, the matching score fusion in face recognition can

benefit from both the proposed landmark confidences and the

nonlinear transformation.

VI. CONCLUSION

In this paper, we propose two methods for measuring

the landmark confidence: local confidence based on local

predictors of each facial landmark, and global confidence

Fig. 7. Comparative performance (CMC) on JANUS CS2 dataset for our
confidence based fusion method for face identification.

based on a 3D rendered face model. Both confidence metrics

are analyzed and evaluated. Our experiments show that both

confidences are beneficial to face recognition by up to 9%
improvements compared to the methods without landmark

confidences.

In our future work, we will explore the landmark con-

fidences of videos. A robust and accurate tracking in the

video is still a huge challenge today. We will model a new

confidence with temporal information in order to help the

face tracking and the video based face recognition.
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[3] T. Baltrušaitis, P. Robinson, and L.-P. Morency. Continuous condi-
tional neural fields for structured regression. In Computer Vision–
ECCV 2014, pages 593–608. Springer, 2014.

671671671671671

Authorized licensed use limited to: Korea Institute of Science and Technology. Downloaded on February 09,2023 at 07:04:32 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III

PERFORMANCE COMPARISONS OF THE PROPOSED METHOD TO THE PREVIOUS FACE RECOGNITION APPROACHES ON JANUS CS2 DATASET.

Matching method ↓ TAR(%) Identification Rate (%)
Eval. Measures → FAR@1e-2 FAR@1e-3 FAR@1e-4 Rank-1 Rank-5 Rank-10
COTs [13] 58.1 37 - 55.1 69.4 74.1
GOTs [13] 46.7 25 - 41.3 57.1 62.4
Fisher Vector [8] 41.1 25.0 38.1 55.9 63.7 -
J.-C. Chen et al. [7] 87.6 - - 83.8 92.4 94.9
Ours(Local + Global LMCs + Sigmoid) 88.76 69.24 43.19 85.03 92.86 94.97

TABLE IV

AVERAGE PERFORMANCES OF THE SCORE FUSION ON IJB-A DATASET [13] WITH LOCAL AND GLOBAL CONFIDENCES.

Matching method ↓ TAR(%) Identification Rate (%)
Eval. Measures → FAR@1e-2 FAR@1e-3 FAR@1e-4 Rank-1 Rank-5 Rank-10
2D Alignment [15] 85.32 49.62 19.14 89.97 95.53 96.73
Cropping Only (Unaligned) [16] 79.06 35.56 8.87 85.37 94.28 96.16

Average [19] 85.96 47.47 16.72 89.28 95.51 96.94
Max [19] 84.82 47.34 16.60 89.45 95.49 96.83
Min [19] 83.24 41.19 12.19 87.97 95.21 96.62
Weighted Average 86.42 51.75 19.64 90.18 95.67 96.92

Score Replacement 86.81 52.84 20.51 90.09 95.59 96.90
Local LMCs Only [5] 85.67 49.14 18.01 89.03 95.38 96.85
Local LMCs + Sigmoid 87.89 56.11 22.91 90.39 95.66 97.05
Global LMCs + Sigmoid 87.88 55.93 24.66 90.27 95.76 97.00
Local + Global LMCs + Sigmoid 88.29 56.74 23.83 90.42 95.75 97.02

[4] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Local-
izing parts of faces using a consensus of exemplars. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 35(12):2930–2940,
2013.

[5] L. Best-Rowden, H. Han, C. Otto, B. F. Klare, and A. K. Jain.
Unconstrained face recognition: Identifying a person of interest from
a media collection. IEEE Transactions on Information Forensics and
Security, 9(12):2144–2157, 2014.

[6] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by Explicit Shape
Regression. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2887–2894. Ieee, jun 2012.

[7] J.-C. Chen, V. M. Patel, and R. Chellappa. Unconstrained face
verification using deep cnn features. In 2016 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 1–9, 2016.

[8] J.-C. Chen, S. Sankaranarayanan, V. M. Patel, and R. Chellappa.
Unconstrained face verification using fisher vectors computed from
frontalized faces. In IEEE 7th International Conference on Biometrics
Theory, Applications and Systems (BTAS), pages 1–8, 2015.

[9] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-PIE.
In IEEE International Conference on Automatic Face and Gesture
Recognition, pages 1–8, 2008.

[10] Y. Gurovich, I. Kissos, and Y. Hanani. Quality scores for deep regres-
sion systems. In Image Processing (ICIP), 2016 IEEE International
Conference on, pages 3758–3762. IEEE, 2016.

[11] A. F. Hayes and K. Krippendorff. Answering the call for a standard
reliability measure for coding data. Communication methods and
measures, 1(1):77–89, 2007.

[12] K. Kim, T. Baltruaitis, A. Zadeh, L.-P. Morency, and G. Medioni.
Holistically constrained local model: Going beyond frontal poses
for facial landmark detection. In Proceedings of the British Ma-
chine Vision Conference (BMVC), pages 095.1–095.12. BMVA Press,
September 2016.

[13] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen,
P. Grother, A. Mah, and A. K. Jain. Pushing the frontiers of
unconstrained face detection and recognition: Iarpa janus benchmark
a. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1931–1939, 2015.

[14] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. Interactive
facial feature localization. In Computer Vision–ECCV 2012, pages
679–692. Springer, 2012.

[15] I. Masi, S. Rawls, G. Medioni, and P. Natarajan. Pose-aware face
recognition in the wild. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4838–4846, 2016.

[16] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition.
In British Machine Vision Conference, volume 1, page 6, 2015.

[17] N. Poh and J. Kittler. A unified framework for biometric expert fusion
incorporating quality measures. IEEE transactions on pattern analysis
and machine intelligence, 34(1):3–18, 2012.

[18] G. Rajamanoharan and T. F. Cootes. Multi-View Constrained Local
Models for Large Head Angle Facial Tracking. In ICCV, 2015.

[19] A. Ross and A. Jain. Information fusion in biometrics. Pattern
recognition letters, 24(13):2115–2125, 2003.

[20] J. M. Saragih, S. Lucey, and J. F. Cohn. Deformable Model Fitting
by Regularized Landmark Mean-Shift. 91(2):200–215, 2011.

[21] A. Steger, R. Timofte, and L. V. Gool. Failure detection for facial
landmark detectors, 2016.

[22] Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade
for facial point detection. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 3476–
3483, 2013.

[23] X. Xiong and F. Torre. Supervised descent method and its applications
to face alignment. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 532–539, 2013.

[24] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from
scratch. arXiv preprint arXiv:1411.7923, 2014.

[25] J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-fine auto-encoder
networks (cfan) for real-time face alignment. In Computer Vision–
ECCV 2014, pages 1–16. Springer, 2014.

[26] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda:
Pose aligned networks for deep attribute modeling. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1637–1644, 2014.

[27] S. Zhu, C. Li, C. Change Loy, and X. Tang. Face alignment by coarse-
to-fine shape searching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4998–5006, 2015.

672672672672672

Authorized licensed use limited to: Korea Institute of Science and Technology. Downloaded on February 09,2023 at 07:04:32 UTC from IEEE Xplore.  Restrictions apply. 


