Full metadata record

DC Field Value Language
dc.contributor.authorKo, Young-Dae-
dc.contributor.authorKang, Jin-Gu-
dc.contributor.authorPark, Jae-Gwan-
dc.contributor.authorLee, Sungjun-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2024-01-20T20:30:36Z-
dc.date.available2024-01-20T20:30:36Z-
dc.date.created2021-09-05-
dc.date.issued2009-11-11-
dc.identifier.issn0957-4484-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/131960-
dc.description.abstractWe propose a promising synthetic technique, which we term 'self-supported nanostructuring', for the direct growth of one-dimensional, SnO2 nanowires on the current collector. The technique is based on a vapor-liquid-solid (VLS) mechanism via thermal evaporation at low synthetic temperature (600 degrees C). The as-synthesized SnO2 nanowire electrode did not have any buffer layer prior to the nanowire evolution, and exhibited a single crystalline phase with highly uniform morphology and a thin diameter ranging from 40 to 50 nm with a length of more than 1 mu m. The SnO2 nanowire electrode demonstrated stable cycling behaviors and delivered a high specific discharge capacity of 510 mA h g(-1), even at the 50th cycle, which exceeded that of SnO2 nanopowder and Sn nanopowder electrodes. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with a rechargeable discharge capacity of 600 mA h g(-1) at 3 C (where 1 C = 782 mA g(-1)), 530 mA h g(-1) at 5 C, and 440 mA h g(-1) at 10 C. Our results support the potential opportunity for developing high-performance Li-ion batteries based on Li-alloying anode materials in terms of high-power density and high-energy density.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.subjectSTORAGE-
dc.subjectGROWTH-
dc.subjectANODES-
dc.subjectNANOMATERIALS-
dc.subjectNANORODS-
dc.subjectOXIDE-
dc.titleSelf-supported SnO2 nanowire electrodes for high-power lithium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1088/0957-4484/20/45/455701-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOTECHNOLOGY, v.20, no.45-
dc.citation.titleNANOTECHNOLOGY-
dc.citation.volume20-
dc.citation.number45-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000270904600021-
dc.identifier.scopusid2-s2.0-70350648722-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusNANOMATERIALS-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusOXIDE-
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE