Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ko, Young-Dae | - |
dc.contributor.author | Kang, Jin-Gu | - |
dc.contributor.author | Park, Jae-Gwan | - |
dc.contributor.author | Lee, Sungjun | - |
dc.contributor.author | Kim, Dong-Wan | - |
dc.date.accessioned | 2024-01-20T20:30:36Z | - |
dc.date.available | 2024-01-20T20:30:36Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2009-11-11 | - |
dc.identifier.issn | 0957-4484 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/131960 | - |
dc.description.abstract | We propose a promising synthetic technique, which we term 'self-supported nanostructuring', for the direct growth of one-dimensional, SnO2 nanowires on the current collector. The technique is based on a vapor-liquid-solid (VLS) mechanism via thermal evaporation at low synthetic temperature (600 degrees C). The as-synthesized SnO2 nanowire electrode did not have any buffer layer prior to the nanowire evolution, and exhibited a single crystalline phase with highly uniform morphology and a thin diameter ranging from 40 to 50 nm with a length of more than 1 mu m. The SnO2 nanowire electrode demonstrated stable cycling behaviors and delivered a high specific discharge capacity of 510 mA h g(-1), even at the 50th cycle, which exceeded that of SnO2 nanopowder and Sn nanopowder electrodes. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with a rechargeable discharge capacity of 600 mA h g(-1) at 3 C (where 1 C = 782 mA g(-1)), 530 mA h g(-1) at 5 C, and 440 mA h g(-1) at 10 C. Our results support the potential opportunity for developing high-performance Li-ion batteries based on Li-alloying anode materials in terms of high-power density and high-energy density. | - |
dc.language | English | - |
dc.publisher | IOP PUBLISHING LTD | - |
dc.subject | STORAGE | - |
dc.subject | GROWTH | - |
dc.subject | ANODES | - |
dc.subject | NANOMATERIALS | - |
dc.subject | NANORODS | - |
dc.subject | OXIDE | - |
dc.title | Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1088/0957-4484/20/45/455701 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | NANOTECHNOLOGY, v.20, no.45 | - |
dc.citation.title | NANOTECHNOLOGY | - |
dc.citation.volume | 20 | - |
dc.citation.number | 45 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000270904600021 | - |
dc.identifier.scopusid | 2-s2.0-70350648722 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | STORAGE | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | ANODES | - |
dc.subject.keywordPlus | NANOMATERIALS | - |
dc.subject.keywordPlus | NANORODS | - |
dc.subject.keywordPlus | OXIDE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.