Magnetic Properties of Vanandium-Doped Silicon Carbide Nanowires

Title
Magnetic Properties of Vanandium-Doped Silicon Carbide Nanowires
Authors
성한규박태은이승철이광렬박재관최헌진
Keywords
silicon carbide nanowires; doping; diluted magnetic semiconductor
Issue Date
2009-02
Publisher
Metals and Materials International
Citation
VOL 15, NO 1, 107-111
Abstract
This study reports the magnetic properties of vanadium (V) doped single crystalline silicon carbide nanowires. The first principle calculation indicated that the V-doped cubic SiC phase can exhibit half-metallic ferromagnetic properties that are essential for the realization of spintronic devices. Based on this calculation, V-doped SiC nanowires were fabricated in a chemical vapor deposition process. The single crystalline β-SiC nanowires, which are doped with ca. 4 at.% of V, had diameters of < 100 nm and a length of several μm. High-resolution transmission electron microscopy observations revealed vanadium carbide (VC) phases in the nanowires, even at this low concentration of dopants. Magnetic characterization implies that the nanowires are a mixture of the diamagnetic phase of VC and ferro- or paramagnetic phases of V-doped SiC. These results suggest that the doping of transition metal having high solubility to the SiC phase can lead to the realization of dilute magnetic semiconductor behavior at very low temperature.
URI
https://pubs.kist.re.kr/handle/201004/35949
ISSN
1598-9623
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE