Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 한훈식 | - |
dc.contributor.author | 김윤호 | - |
dc.contributor.author | 김서영 | - |
dc.contributor.author | 엄석기 | - |
dc.contributor.author | 현재민 | - |
dc.date.accessioned | 2015-12-02T15:43:42Z | - |
dc.date.available | 2015-12-02T15:43:42Z | - |
dc.date.issued | 201006 | - |
dc.identifier.citation | , 1-7 | - |
dc.identifier.other | 33558 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/38521 | - |
dc.description.abstract | The thermoelectric power generation with various thermal conditions is examined. An analysis model considered the manufacturing factors and the pellet size is presented to predict the performance characteristics of thermoelectric generators. The theoretical analysis shows that the maximum power output is produced when the electrical internal resistance is identical to the external load resistance. The overall performance is significantly increased with the temperature difference between cold and hot sides of thermoelectric generator. Under the fixed temperature difference, the thermoelectric generator produces the identical voltage, current and power outputs regardless of the operating temperature since the assumption of the constant thermoelectric properties is adopted in the analysis model. However, the experimental results obtained disclose that the effect of the operating temperature appears in the overall performance of the thermoelectric generator. Thus, the experimental correction of electrical internal resistance is adopted in the modified analysis model. Considerations are focused on the explicit role of the temperature-dependent electrical internal resistance for a method of accurate performance prediction. The modified analysis model is shown to be consistent with the experimental results in terms of the voltage output, current output and power outputs. | - |
dc.publisher | Proceedings of ITherm2010 | - |
dc.subject | Thermoelectric power generation | - |
dc.subject | Electrical internal resistance | - |
dc.subject | Operating temperature | - |
dc.subject | Performance prediction | - |
dc.title | Performance Measure and Analysis of a Thermoelectric Power Generator | - |
dc.type | Conference Paper | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.